Monica Xiao Cheng
2024
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning
Haoyu Wang
|
Tianci Liu
|
Ruirui Li
|
Monica Xiao Cheng
|
Tuo Zhao
|
Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-efficient fine-tuning (PEFT) methods, such as the popular LoRA family, introduce low-rank matrices to learn only a few parameters efficiently. However, during inference, the product of these matrices updates all pre-trained parameters, complicating tasks like knowledge editing that require selective updates. We propose a novel PEFT method, which conducts row and column-wise sparse low-rank adaptation (RoseLoRA), to address this challenge. RoseLoRA identifies and updates only the most important parameters for a specific task, maintaining efficiency while preserving other model knowledge. By adding a sparsity constraint on the product of low-rank matrices and converting it to row and column-wise sparsity, we ensure efficient and precise model updates. Our theoretical analysis guarantees the lower bound of the sparsity with respective to the matrix product. Extensive experiments on five benchmarks across twenty datasets demonstrate that RoseLoRA outperforms baselines in both general fine-tuning and knowledge editing tasks.
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
Haoyu Wang
|
Ruirui Li
|
Haoming Jiang
|
Jinjin Tian
|
Zhengyang Wang
|
Chen Luo
|
Xianfeng Tang
|
Monica Xiao Cheng
|
Tuo Zhao
|
Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often struggle with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.
Search
Fix data
Co-authors
- Jing Gao 2
- Ruirui Li 2
- Haoyu Wang 2
- Tuo Zhao 2
- Haoming Jiang 1
- show all...