Namrata Patel


2022

pdf bib
Détection des influenceurs dans des médias sociaux par une approche hybride (Influencer detection in social media, a hybrid approach)
Kevin Deturck | Damien Nouvel | Namrata Patel | Frederique Segond
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

L’influence sociale est un phénomène important dans divers domaines, tels que l’économie et la politique, qui a gagné en résonnance avec la popularité des médias sociaux, notamment les réseaux sociaux et les forums. La majorité des travaux sur ce sujet propose des approches fondées sur des théories en sciences humaines (sociologie, linguistique), et des techniques d’analyse de réseau (mesures de propagation et de centralité) ou de TAL. Dans cet article, nous présentons un modèle d’influence inspiré de travaux en psychologie sociale, sur lequel nous construisons un système combinant un module de TAL pour détecter les messages reflétant les processus d’influence, associé à une analyse par centralité de la transmission de ces messages. Nos expériences sur le forum de débats Change My View montrent que l’approche par hybridation, comparée à la centralité seule, aide à mieux détecter les influenceurs.

pdf bib
Annotation of Messages from Social Media for Influencer Detection
Kevin Deturck | Damien Nouvel | Namrata Patel | Frédérique Segond
Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) within LREC2022

To develop an influencer detection system, we designed an influence model based on the analysis of conversations in the “Change My View” debate forum. This led us to identify enunciative features (argumentation, emotion expression, view change, ...) related to influence between participants. In this paper, we present the annotation campaign we conducted to build up a reference corpus on these enunciative features. The annotation task was to identify in social media posts the text segments that corresponded to each enunciative feature. The posts to be annotated were extracted from two social media: the “Change My View” debate forum, with discussions on various topics, and Twitter, with posts from users identified as supporters of ISIS (Islamic State of Iraq and Syria). Over a thousand posts have been double or triple annotated throughout five annotation sessions gathering a total of 27 annotators. Some of the sessions involved the same annotators, which allowed us to analyse the evolution of their annotation work. Most of the sessions resulted in a reconciliation phase between the annotators, allowing for discussion and iterative improvement of the guidelines. We measured and analysed inter-annotator agreements over the course of the sessions, which allowed us to validate our iterative approach.

2020

pdf bib
DEFT 2020 - Extraction d’information fine dans les données cliniques : terminologies spécialisées et graphes de connaissance (Fine-grained Information Extraction in Clinical Data : Dedicated Terminologies and Knowledge Graphs )
Thomas Lemaitre | Camille Gosset | Mathieu Lafourcade | Namrata Patel | Guilhem Mayoral
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Atelier DÉfi Fouille de Textes

Nous présentons dans cet article notre approche à base de règles conçue pour répondre à la tâche 3 de la campagne d’évaluation DEFT 2020. Selon le type d’information à extraire, nous construisons (1) une terminologie spécialisée à partir de ressources médicales et (2) un graphe orienté basé sur les informations extraites de la base de connaissances généraliste et de grande taille - JeuxDeMots.