Response generation is one of the critical components in task-oriented dialog systems. Existing studies have shown that large pre-trained language models can be adapted to this task. The typical paradigm of adapting such extremely large language models would be by fine-tuning on the downstream tasks which is not only time-consuming but also involves significant resources and access to fine-tuning data. Prompting (Schick and Schütze, 2020) has been an alternative to fine-tuning in many NLP tasks. In our work, we explore the idea of using prompting for response generation in task-oriented dialog systems. Specifically, we propose an approach that performs contextual dynamic prompting where the prompts are learnt from dialog contexts. We aim to distill useful prompting signals from the dialog context. On experiments with MultiWOZ 2.2 dataset (Zang et al., 2020), we show that contextual dynamic prompts improve response generation in terms of combined score (Mehri et al., 2019) by 3 absolute points, and an additional 17 points when dialog states are incorporated. Furthermore, we carried out human annotation on these conversations and found that agents which incorporate context are preferred over agents with vanilla prefix-tuning.
With the growth in the usage of social media, it has become increasingly common for people to hide behind a mask and abuse others. We have attempted to detect such tweets and comments that are malicious in intent, which either targets an individual or a group. Our best classifier for identifying offensive tweets for SubTask A (Classifying offensive vs. nonoffensive) has an accuracy of 83.14% and a f1- score of 0.7565 on the actual test data. For SubTask B, to identify if an offensive tweet is targeted (If targeted towards an individual or a group), the classifier performs with an accuracy of 89.17% and f1-score of 0.5885. The paper talks about how we generated linguistic and semantic features to build an ensemble machine learning model. By training with more extracts from different sources (Facebook, and more tweets), the paper shows how the accuracy changes with additional training data.
Sentiment analysis is the process of identifying the opinion expressed in text. Recently, it has been used to study behavioral finance, and in particular the effect of opinions and emotions on economic or financial decisions. In this paper, we use a public dataset of labeled tweets that has been labeled by Amazon Mechanical Turk and then we propose a baseline classification model. Then, by using Granger causality of both sentiment datasets with the different stocks, we shows that there is causality between social media and stock market returns (in both directions) for many stocks. Finally, We evaluate this causality analysis by showing that in the event of a specific news on certain dates, there are evidences of trending the same news on Twitter for that stock.
Sentiment analysis is the process of identifying the opinion expressed in text. Recently it has been used to study behavioral finance, and in particular the effect of opinions and emotions on economic or financial decisions. SemEval-2017 task 5 focuses on the financial market as the domain for sentiment analysis of text; specifically, task 5, subtask 1 focuses on financial tweets about stock symbols. In this paper, we describe a machine learning classifier for binary classification of financial tweets. We used natural language processing techniques and the random forest algorithm to train our model, and tuned it for the training dataset of Task 5, subtask 1. Our system achieves the 7th rank on the leaderboard of the task.