Nazia Nafis


2023

pdf bib
Modelling Political Aggression on Social Media Platforms
Akash Rawat | Nazia Nafis | Dnyaneshwar Bhadane | Diptesh Kanojia | Rudra Murthy
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Recent years have seen a proliferation of aggressive social media posts, often wreaking even real-world consequences for victims. Aggressive behaviour on social media is especially evident during important sociopolitical events such as elections, communal incidents, and public protests. In this paper, we introduce a dataset in English to model political aggression. The dataset comprises public tweets collated across the time-frames of two of the most recent Indian general elections. We manually annotate this data for the task of aggression detection and analyze this data for aggressive behaviour. To benchmark the efficacy of our dataset, we perform experiments by fine-tuning pre-trained language models and comparing the results with models trained on an existing but general domain dataset. Our models consistently outperform the models trained on existing data. Our best model achieves a macro F1-score of 66.66 on our dataset. We also train models on a combined version of both datasets, achieving best macro F1-score of 92.77, on our dataset. Additionally, we create subsets of code-mixed and non-code-mixed data from the combined dataset to observe variations in results due to the Hindi-English code-mixing phenomenon. We publicly release the anonymized data, code, and models for further research.

pdf bib
Towards Safer Communities: Detecting Aggression and Offensive Language in Code-Mixed Tweets to Combat Cyberbullying
Nazia Nafis | Diptesh Kanojia | Naveen Saini | Rudra Murthy
The 7th Workshop on Online Abuse and Harms (WOAH)

Cyberbullying is a serious societal issue widespread on various channels and platforms, particularly social networking sites. Such platforms have proven to be exceptionally fertile grounds for such behavior. The dearth of high-quality training data for multilingual and low-resource scenarios, data that can accurately capture the nuances of social media conversations, often poses a roadblock to this task. This paper attempts to tackle cyberbullying, specifically its two most common manifestations - aggression and offensiveness. We present a novel, manually annotated dataset of a total of 10,000 English and Hindi-English code-mixed tweets, manually annotated for aggression detection and offensive language detection tasks. Our annotations are supported by inter-annotator agreement scores of 0.67 and 0.74 for the two tasks, indicating substantial agreement. We perform comprehensive fine-tuning of pre-trained language models (PTLMs) using this dataset to check its efficacy. Our challenging test sets show that the best models achieve macro F1-scores of 67.87 and 65.45 on the two tasks, respectively. Further, we perform cross-dataset transfer learning to benchmark our dataset against existing aggression and offensive language datasets. We also present a detailed quantitative and qualitative analysis of errors in prediction, and with this paper, we publicly release the novel dataset, code, and models.