Nevan Wichers


2024

pdf bib
Enhancing Reinforcement Learning with Dense Rewards from Language Model Critic
Meng Cao | Lei Shu | Lei Yu | Yun Zhu | Nevan Wichers | Yinxiao Liu | Lei Meng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Reinforcement learning (RL) can align language models with non-differentiable reward signals, such as human preferences. However, a major challenge arises from the sparsity of these reward signals - typically, there is only a single reward for an entire output. This sparsity of rewards can lead to inefficient and unstable learning. To address this challenge, our paper introduces an novel framework that utilizes the critique capability of Large Language Models (LLMs) to produce intermediate-step rewards during RL training. Our method involves coupling a policy model with a critic language model, which is responsible for providing comprehensive feedback of each part of the output. This feedback is then translated into token or span-level rewards that can be used to guide the RL training process. We investigate this approach under two different settings: one where the policy model is smaller and is paired with a more powerful critic model, and another where a single language model fulfills both roles. We assess our approach on three text generation tasks: sentiment control, language model detoxification, and summarization. Experimental results show that incorporating artificial intrinsic rewards significantly improve both sample efficiency and the overall performance of the policy model, supported by both automatic and human evaluation.

pdf bib
Fusion-Eval: Integrating Assistant Evaluators with LLMs
Lei Shu | Nevan Wichers | Liangchen Luo | Yun Zhu | Yinxiao Liu | Jindong Chen | Lei Meng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Evaluating natural language generation (NLG) systems automatically poses significant challenges.Recent studies have employed large language models (LLMs) as reference-free metrics for NLG evaluation, enhancing adaptability to new tasks tasks. However, these methods still show lower correspondence with human judgments compared to specialized neural evaluators.In this paper, we introduce “Fusion-Eval”, an innovative approach that leverages LLMs to integrate insights from various assistant evaluators. The LLM is given the example to evaluate along with scores from the assistant evaluators. Each of these evaluators specializes in assessing distinct aspects of responses.Fusion-Eval achieves a 0.962 system-level Kendall-Tau correlation with humans on SummEval and a 0.744 turn-level Spearman correlation on TopicalChat, which is significantly higher than baseline methods. These results highlight Fusion-Eval’s significant potential in the realm of natural language system evaluation.

pdf bib
Gradient-Based Language Model Red Teaming
Nevan Wichers | Carson Denison | Ahmad Beirami
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Red teaming is a common strategy for identifying weaknesses in generative language models (LMs) by producing adversarial prompts that trigger models to generate unsafe responses. Red teaming is instrumental for both model alignment and evaluation, but is labor-intensive and difficult to scale when done by humans. In this paper, we present Gradient-Based Red Teaming (GBRT), a novel red teaming method for automatically generating diverse prompts that are likely to cause an LM to output unsafe responses. GBRT is a form of prompt learning, trained by scoring an LM response with a safety classifier and then backpropagating through the frozen safety classifier and LM to update the prompt. To improve the coherence of input prompts, we introduce two variants that add a realism loss and fine-tune a pretrained model to generate the prompts instead of learning the prompts directly. Our experiments show that GBRT is more effective at finding prompts that trigger an LM to generate unsafe responses than a strong reinforcement learning-based red teaming approach and works even when the LM has been fine-tuned to produce safer outputs.