Nicholas Botzer


2023

pdf bib
TK-KNN: A Balanced Distance-Based Pseudo Labeling Approach for Semi-Supervised Intent Classification
Nicholas Botzer | David Vazquez | Tim Weninger | Issam Laradji
Findings of the Association for Computational Linguistics: EMNLP 2023

The ability to detect intent in dialogue systems has become increasingly important in modern technology. These systems often generate a large amount of unlabeled data, and manually labeling this data requires substantial human effort. Semi-supervised methods attempt to remedy this cost by using a model trained on a few labeled examples and then by assigning pseudo-labels to further a subset of unlabeled examples that has a model prediction confidence higher than a certain threshold. However, one particularly perilous consequence of these methods is the risk of picking an imbalanced set of examples across classes, which could lead to poor labels. In the present work, we describe Top-K K-Nearest Neighbor (TK-KNN), which uses a more robust pseudo-labeling approach based on distance in the embedding space while maintaining a balanced set of pseudo-labeled examples across classes through a ranking-based approach. Experiments on several datasets show that TK-KNN outperforms existing models, particularly when labeled data is scarce on popular datasets such as CLINC150 and Banking77.

2022

pdf bib
Posthoc Verification and the Fallibility of the Ground Truth
Yifan Ding | Nicholas Botzer | Tim Weninger
Proceedings of the First Workshop on Dynamic Adversarial Data Collection

Classifiers commonly make use of pre-annotated datasets, wherein a model is evaluated by pre-defined metrics on a held-out test set typically made of human-annotated labels. Metrics used in these evaluations are tied to the availability of well-defined ground truth labels, and these metrics typically do not allow for inexact matches. These noisy ground truth labels and strict evaluation metrics may compromise the validity and realism of evaluation results. In the present work, we conduct a systematic label verification experiment on the entity linking (EL) task. Specifically, we ask annotators to verify the correctness of annotations after the fact (, posthoc). Compared to pre-annotation evaluation, state-of-the-art EL models performed extremely well according to the posthoc evaluation methodology. Surprisingly, we find predictions from EL models had a similar or higher verification rate than the ground truth. We conclude with a discussion on these findings and recommendations for future evaluations. The source code, raw results, and evaluation scripts are publicly available via the MIT license at https://github.com/yifding/e2e_EL_evaluate