Nicole Limtiaco
2018
Universal Sentence Encoder for English
Daniel Cer
|
Yinfei Yang
|
Sheng-yi Kong
|
Nan Hua
|
Nicole Limtiaco
|
Rhomni St. John
|
Noah Constant
|
Mario Guajardo-Cespedes
|
Steve Yuan
|
Chris Tar
|
Brian Strope
|
Ray Kurzweil
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
We present easy-to-use TensorFlow Hub sentence embedding models having good task transfer performance. Model variants allow for trade-offs between accuracy and compute resources. We report the relationship between model complexity, resources, and transfer performance. Comparisons are made with baselines without transfer learning and to baselines that incorporate word-level transfer. Transfer learning using sentence-level embeddings is shown to outperform models without transfer learning and often those that use only word-level transfer. We show good transfer task performance with minimal training data and obtain encouraging results on word embedding association tests (WEAT) of model bias.
Search
Fix data
Co-authors
- Daniel Cer 1
- Noah Constant 1
- Mario Guajardo-Cespedes 1
- Nan Hua 1
- Sheng-yi Kong 1
- show all...