Nihad Karim Chowdhury


2022

pdf bib
CSECU-DSG@SMM4H’22: Transformer based Unified Approach for Classification of Changes in Medication Treatments in Tweets and WebMD Reviews
Afrin Sultana | Nihad Karim Chowdhury | Abu Nowshed Chy
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

Medications play a vital role in medical treatment as medication non-adherence reduces clinical benefit, results in morbidity, and medication wastage. Self-declared changes in drug treatment and their reasons are automatically extracted from tweets and user reviews, helping to determine the effectiveness of drugs and improve treatment care. SMM4H 2022 Task 3 introduced a shared task focusing on the identification of non-persistent patients from tweets and WebMD reviews. In this paper, we present our participation in this task. We propose a neural approach that integrates the strengths of the transformer model, the Long Short-Term Memory (LSTM) model, and the fully connected layer into a unified architecture. Experimental results demonstrate the competitive performance of our system on test data with 61% F1-score on task 3a and 86% F1-score on task 3b. Our proposed neural approach ranked first in task 3b.