Nikhil Saini


2021

pdf bib
Disfluency Correction using Unsupervised and Semi-supervised Learning
Nikhil Saini | Drumil Trivedi | Shreya Khare | Tejas Dhamecha | Preethi Jyothi | Samarth Bharadwaj | Pushpak Bhattacharyya
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Spoken language is different from the written language in its style and structure. Disfluencies that appear in transcriptions from speech recognition systems generally hamper the performance of downstream NLP tasks. Thus, a disfluency correction system that converts disfluent to fluent text is of great value. This paper introduces a disfluency correction model that translates disfluent to fluent text by drawing inspiration from recent encoder-decoder unsupervised style-transfer models for text. We also show considerable benefits in performance when utilizing a small sample of 500 parallel disfluent-fluent sentences in a semi-supervised way. Our unsupervised approach achieves a BLEU score of 79.39 on the Switchboard corpus test set, with further improvement to a BLEU score of 85.28 with semi-supervision. Both are comparable to two competitive fully-supervised models.

pdf bib
Language Relatedness and Lexical Closeness can help Improve Multilingual NMT: IITBombay@MultiIndicNMT WAT2021
Jyotsana Khatri | Nikhil Saini | Pushpak Bhattacharyya
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

Multilingual Neural Machine Translation has achieved remarkable performance by training a single translation model for multiple languages. This paper describes our submission (Team ID: CFILT-IITB) for the MultiIndicMT: An Indic Language Multilingual Task at WAT 2021. We train multilingual NMT systems by sharing encoder and decoder parameters with language embedding associated with each token in both encoder and decoder. Furthermore, we demonstrate the use of transliteration (script conversion) for Indic languages in reducing the lexical gap for training a multilingual NMT system. Further, we show improvement in performance by training a multilingual NMT system using languages of the same family, i.e., related languages.

2020

pdf bib
Generating Fluent Translations from Disfluent Text Without Access to Fluent References: IIT Bombay@IWSLT2020
Nikhil Saini | Jyotsana Khatri | Preethi Jyothi | Pushpak Bhattacharyya
Proceedings of the 17th International Conference on Spoken Language Translation

Machine translation systems perform reasonably well when the input is well-formed speech or text. Conversational speech is spontaneous and inherently consists of many disfluencies. Producing fluent translations of disfluent source text would typically require parallel disfluent to fluent training data. However, fluent translations of spontaneous speech are an additional resource that is tedious to obtain. This work describes the submission of IIT Bombay to the Conversational Speech Translation challenge at IWSLT 2020. We specifically tackle the problem of disfluency removal in disfluent-to-fluent text-to-text translation assuming no access to fluent references during training. Common patterns of disfluency are extracted from disfluent references and a noise induction model is used to simulate them starting from a clean monolingual corpus. This synthetically constructed dataset is then considered as a proxy for labeled data during training. We also make use of additional fluent text in the target language to help generate fluent translations. This work uses no fluent references during training and beats a baseline model by a margin of 4.21 and 3.11 BLEU points where the baseline uses disfluent and fluent references, respectively. Index Terms- disfluency removal, machine translation, noise induction, leveraging monolingual data, denoising for disfluency removal.