Nischal Chandra
2023
ACQUIRED: A Dataset for Answering Counterfactual Questions In Real-Life Videos
Te-Lin Wu
|
Zi-Yi Dou
|
Qingyuan Hu
|
Yu Hou
|
Nischal Chandra
|
Marjorie Freedman
|
Ralph Weischedel
|
Nanyun Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.
Search
Fix data
Co-authors
- Zi-Yi Dou 1
- Marjorie Freedman 1
- Yu Hou 1
- Qingyuan Hu 1
- Nanyun Peng 1
- show all...