Nithish Kannen


2024

pdf bib
Efficient Pointwise-Pairwise Learning-to-Rank for News Recommendation
Nithish Kannen | Yao Ma | Gerrit J.j. Van Den Burg | Jean Baptiste Faddoul
Findings of the Association for Computational Linguistics: EMNLP 2024

News recommendation is a challenging task that involves personalization based on the interaction history and preferences of each user. Recent works have leveraged the power of pretrained language models (PLMs) to directly rank news items by using inference approaches that predominately fall into three categories: pointwise, pairwise, and listwise learning-to-rank. While pointwise methods offer linear inference complexity, they fail to capture crucial comparative information between items that is more effective for ranking tasks. Conversely, pairwise and listwise approaches excel at incorporating these comparisons but suffer from practical limitations: pairwise approaches are either computationally expensive or lack theoretical guarantees and listwise methods often perform poorly in practice. In this paper, we propose a novel framework for PLM-based news recommendation that integrates both pointwise relevance prediction and pairwise comparisons in a scalable manner. We present a rigorous theoretical analysis of our framework, establishing conditions under which our approach guarantees improved performance. Extensive experiments show that our approach outperforms the state-of-the-art methods on the MIND and Adressa news recommendation datasets.

2023

pdf bib
Best of Both Worlds: Towards Improving Temporal Knowledge Base Question Answering via Targeted Fact Extraction
Nithish Kannen | Udit Sharma | Sumit Neelam | Dinesh Khandelwal | Shajith Ikbal | Hima Karanam | L Subramaniam
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Temporal question answering (QA) is a special category of complex question answering task that requires reasoning over facts asserting time intervals of events. Previous works have predominately relied on Knowledge Base Question Answering (KBQA) for temporal QA. One of the major challenges faced by these systems is their inability to retrieve all relevant facts due to factors such as incomplete KB and entity/relation linking errors. A failure to fetch even a single fact will block KBQA from computing the answer. Such cases of KB incompleteness are even more profound in the temporal context. To address this issue, we explore an interesting direction where a targeted temporal fact extraction technique is used to assist KBQA whenever it fails to retrieve temporal facts from the KB. We model the extraction problem as an open-domain question answering task using off-the-shelf language models. This way, we target to extract from textual resources those facts that failed to get retrieved from the KB. Experimental results on two temporal QA benchmarks show promising ~30% & ~10% relative improvements in answer accuracies without any additional training cost.

pdf bib
CONTRASTE: Supervised Contrastive Pre-training With Aspect-based Prompts For Aspect Sentiment Triplet Extraction
Rajdeep Mukherjee | Nithish Kannen | Saurabh Pandey | Pawan Goyal
Findings of the Association for Computational Linguistics: EMNLP 2023

Existing works on Aspect Sentiment Triplet Extraction (ASTE) explicitly focus on developing more efficient fine-tuning techniques for the task. Instead, our motivation is to come up with a generic approach that can improve the downstream performances of multiple ABSA tasks simultaneously. Towards this, we present CONTRASTE, a novel pre-training strategy using CONTRastive learning to enhance the ASTE performance. While we primarily focus on ASTE, we also demonstrate the advantage of our proposed technique on other ABSA tasks such as ACOS, TASD, and AESC. Given a sentence and its associated (aspect, opinion, sentiment) triplets, first, we design aspect-based prompts with corresponding sentiments masked. We then (pre)train an encoder-decoder model by applying contrastive learning on the decoder-generated aspect-aware sentiment representations of the masked terms. For fine-tuning the model weights thus obtained, we then propose a novel multi-task approach where the base encoder-decoder model is combined with two complementary modules, a tagging-based Opinion Term Detector, and a regression-based Triplet Count Estimator. Exhaustive experiments on four benchmark datasets and a detailed ablation study establish the importance of each of our proposed components as we achieve new state-of-the-art ASTE results.