Pardis Sadat Zahraei
2024
WSC+: Enhancing The Winograd Schema Challenge Using Tree-of-Experts
Pardis Sadat Zahraei
|
Ali Emami
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
The Winograd Schema Challenge (WSC) serves as a prominent benchmark for evaluating machine understanding. While Large Language Models (LLMs) excel at answering WSC questions, their ability to generate such questions remains less explored. In this work, we propose Tree-of-Experts (ToE), a novel prompting method which enhances the generation of WSC instances (50% valid cases vs. 10% in recent methods). Using this approach, we introduce WSC+, a novel dataset comprising 3,026 LLM-generated sentences. Notably, we extend the WSC framework by incorporating new ‘ambiguous’ and ‘offensive’ categories, providing a deeper insight into model overconfidence and bias. Our analysis reveals nuances in generation-evaluation consistency, suggesting that LLMs may not always outperform in evaluating their own generated questions when compared to those crafted by other models. On WSC+, GPT-4, the top-performing LLM, achieves an accuracy of 68.7%, significantly below the human benchmark of 95.1%.
TuringQ: Benchmarking AI Comprehension in Theory of Computation
Pardis Sadat Zahraei
|
Ehsaneddin Asgari
Findings of the Association for Computational Linguistics: EMNLP 2024
We present TuringQ, the first benchmark designed to evaluate the reasoning capabilities of large language models (LLMs) in the theory of computation. TuringQ consists of 4,006 undergraduate and graduate-level question-answer pairs, categorized into four difficulty levels and covering seven core theoretical areas. We evaluate several open-source LLMs, as well as GPT-4, using Chain of Thought prompting and expert human assessment. Additionally, we propose an automated LLM-based evaluation system that demonstrates competitive accuracy when compared to human evaluation. Fine-tuning a Llama3-8B model on TuringQ shows measurable improvements in reasoning ability and out-of-domain tasks such as algebra. TuringQ serves as both a benchmark and a resource for enhancing LLM performance in complex computational reasoning tasks. Our analysis offers insights into LLM capabilities and advances in AI comprehension of theoretical computer science.