Pengda Qin


2019

pdf bib
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstractive Summarization
Siyao Li | Deren Lei | Pengda Qin | William Yang Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Deep reinforcement learning (RL) has been a commonly-used strategy for the abstractive summarization task to address both the exposure bias and non-differentiable task issues. However, the conventional reward Rouge-L simply looks for exact n-grams matches between candidates and annotated references, which inevitably makes the generated sentences repetitive and incoherent. In this paper, instead of Rouge-L, we explore the practicability of utilizing the distributional semantics to measure the matching degrees. With distributional semantics, sentence-level evaluation can be obtained, and semantically-correct phrases can also be generated without being limited to the surface form of the reference sentences. Human judgments on Gigaword and CNN/Daily Mail datasets show that our proposed distributional semantics reward (DSR) has distinct superiority in capturing the lexical and compositional diversity of natural language.

pdf bib
Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention
Wenhu Chen | Jianshu Chen | Pengda Qin | Xifeng Yan | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Semantically controlled neural response generation on limited-domain has achieved great performance. However, moving towards multi-domain large-scale scenarios are shown to be difficult because the possible combinations of semantic inputs grow exponentially with the number of domains. To alleviate such scalability issue, we exploit the structure of dialog acts to build a multi-layer hierarchical graph, where each act is represented as a root-to-leaf route on the graph. Then, we incorporate such graph structure prior as an inductive bias to build a hierarchical disentangled self-attention network, where we disentangle attention heads to model designated nodes on the dialog act graph. By activating different (disentangled) heads at each layer, combinatorially many dialog act semantics can be modeled to control the neural response generation. On the large-scale Multi-Domain-WOZ dataset, our model can yield a significant improvement over the baselines on various automatic and human evaluation metrics.

2018

pdf bib
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
Pengda Qin | Weiran Xu | William Yang Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

pdf bib
Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning
Pengda Qin | Weiran Xu | William Yang Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Distant supervision has become the standard method for relation extraction. However, even though it is an efficient method, it does not come at no cost—The resulted distantly-supervised training samples are often very noisy. To combat the noise, most of the recent state-of-the-art approaches focus on selecting one-best sentence or calculating soft attention weights over the set of the sentences of one specific entity pair. However, these methods are suboptimal, and the false positive problem is still a key stumbling bottleneck for the performance. We argue that those incorrectly-labeled candidate sentences must be treated with a hard decision, rather than being dealt with soft attention weights. To do this, our paper describes a radical solution—We explore a deep reinforcement learning strategy to generate the false-positive indicator, where we automatically recognize false positives for each relation type without any supervised information. Unlike the removal operation in the previous studies, we redistribute them into the negative examples. The experimental results show that the proposed strategy significantly improves the performance of distant supervision comparing to state-of-the-art systems.