Philipp Borchert


2024

pdf bib
Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages
Fabian David Schmidt | Philipp Borchert | Ivan Vulić | Goran Glavaš
Findings of the Association for Computational Linguistics: EMNLP 2024

LLMs have become a go-to solution not just for text generation, but also for natural language understanding (NLU) tasks. Acquiring extensive knowledge through language modeling on web-scale corpora, they excel on English NLU, yet struggle to extend their NLU capabilities to underrepresented languages. In contrast, machine translation models (MT) produce excellent multilingual representations, resulting in strong translation performance even for low-resource languages. MT encoders, however, lack the knowledge necessary for comprehensive NLU that LLMs obtain through language modeling training on immense corpora. In this work, we get the best both worlds by integrating MT encoders directly into LLM backbones via sample-efficient self-distillation. The resulting MT-LLMs preserve the inherent multilingual representational alignment from the MT encoder, allowing lower-resource languages to tap into the rich knowledge embedded in English-centric LLMs. Merging the MT encoder and LLM in a single model, we mitigate the propagation of translation errors and inference overhead of MT decoding inherent to discrete translation-based cross-lingual transfer (e.g., translate-test). Evaluation spanning three prominent NLU tasks and 127 predominantly low-resource languages renders MT-LLMs highly effective in cross-lingual transfer. MT-LLMs substantially and consistently outperform translation-test based on the same MT model, showing that we truly unlock multilingual language understanding for LLMs.

pdf bib
Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning
Philipp Borchert | Jochen De Weerdt | Marie-Francine Moens
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Differentiating relationships between entity pairs with limited labeled instances poses a significant challenge in few-shot relation classification. Representations of textual data extract rich information spanning the domain, entities, and relations. In this paper, we introduce a novel approach to enhance information extraction combining multiple sentence representations and contrastive learning. While representations in relation classification are commonly extracted using entity marker tokens, we argue that substantial information within the internal model representations remains untapped. To address this, we propose aligning multiple sentence representations, such as the CLS] token, the [MASK] token used in prompting, and entity marker tokens. Our method employs contrastive learning to extract complementary discriminative information from these individual representations. This is particularly relevant in low-resource settings where information is scarce. Leveraging multiple sentence representations is especially effective in distilling discriminative information for relation classification when additional information, like relation descriptions, are not available. We validate the adaptability of our approach, maintaining robust performance in scenarios that include relation descriptions, and showcasing its flexibility to adapt to different resource constraints.

2023

pdf bib
Investigating Bias in Multilingual Language Models: Cross-Lingual Transfer of Debiasing Techniques
Manon Reusens | Philipp Borchert | Margot Mieskes | Jochen De Weerdt | Bart Baesens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

This paper investigates the transferability of debiasing techniques across different languages within multilingual models. We examine the applicability of these techniques in English, French, German, and Dutch. Using multilingual BERT (mBERT), we demonstrate that cross-lingual transfer of debiasing techniques is not only feasible but also yields promising results. Surprisingly, our findings reveal no performance disadvantages when applying these techniques to non-English languages. Using translations of the CrowS-Pairs dataset, our analysis identifies SentenceDebias as the best technique across different languages, reducing bias in mBERT by an average of 13%. We also find that debiasing techniques with additional pretraining exhibit enhanced cross-lingual effectiveness for the languages included in the analyses, particularly in lower-resource languages. These novel insights contribute to a deeper understanding of bias mitigation in multilingual language models and provide practical guidance for debiasing techniques in different language contexts.

pdf bib
CORE: A Few-Shot Company Relation Classification Dataset for Robust Domain Adaptation.
Philipp Borchert | Jochen De Weerdt | Kristof Coussement | Arno De Caigny | Marie-Francine Moens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We introduce CORE, a dataset for few-shot relation classification (RC) focused on company relations and business entities. CORE includes 4,708 instances of 12 relation types with corresponding textual evidence extracted from company Wikipedia pages. Company names and business entities pose a challenge for few-shot RC models due to the rich and diverse information associated with them. For example, a company name may represent the legal entity, products, people, or business divisions depending on the context. Therefore, deriving the relation type between entities is highly dependent on textual context. To evaluate the performance of state-of-the-art RC models on the CORE dataset, we conduct experiments in the few-shot domain adaptation setting. Our results reveal substantial performance gaps, confirming that models trained on different domains struggle to adapt to CORE. Interestingly, we find that models trained on CORE showcase improved out-of-domain performance, which highlights the importance of high-quality data for robust domain generalization. Specifically, the information richness embedded in business entities allows models to focus on contextual nuances, reducing their reliance on superficial clues such as relation-specific verbs. In addition to the dataset, we provide relevant code snippets to facilitate reproducibility and encourage further research in the field. The CORE dataset and code are publicly available at https://anonymous.4open.science/r/CORE-D377.

pdf bib
SEER : A Knapsack approach to Exemplar Selection for In-Context HybridQA
Jonathan Tonglet | Manon Reusens | Philipp Borchert | Bart Baesens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Question answering over hybrid contexts is a complex task, which requires the combination of information extracted from unstructured texts and structured tables in various ways. Recently, In-Context Learning demonstrated significant performance advances for reasoning tasks. In this paradigm, a large language model performs predictions based on a small set of supporting exemplars. The performance of In-Context Learning depends heavily on the selection procedure of the supporting exemplars, particularly in the case of HybridQA, where considering the diversity of reasoning chains and the large size of the hybrid contexts becomes crucial. In this work, we present Selection of ExEmplars for hybrid Reasoning (SEER), a novel method for selecting a set of exemplars that is both representative and diverse. The key novelty of SEER is that it formulates exemplar selection as a Knapsack Integer Linear Program. The Knapsack framework provides the flexibility to incorporate diversity constraints that prioritize exemplars with desirable attributes, and capacity constraints that ensure that the prompt size respects the provided capacity budgets. The effectiveness of SEER is demonstrated on FinQA and TAT-QA, two real-world benchmarks for HybridQA, where it outperforms previous exemplar selection methods.