Pooja Lamani
2023
MUNLP@DravidianLangTech2023: Learning Approaches for Sentiment Analysis in Code-mixed Tamil and Tulu Text
Asha Hegde
|
Kavya G
|
Sharal Coelho
|
Pooja Lamani
|
Hosahalli Lakshmaiah Shashirekha
Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages
Sentiment Analysis (SA) examines the subjective content of a statement, such as opinions, assessments, feelings, or attitudes towards a subject, person, or a thing. Though several models are developed for SA in high-resource languages like English, Spanish, German, etc., uder-resourced languages like Dravidian languages are less explored. To address the challenges of SA in low resource Dravidian languages, in this paper, we team MUNLP describe the models submitted to “Sentiment Analysis in Tamil and Tulu- DravidianLangTech” shared task at Recent Advances in Natural Language Processing (RANLP)-2023. n-gramsSA, EmbeddingsSA and BERTSA are the models proposed for SA shared task. Among all the models, BERTSA exhibited a maximum macro F1 score of 0.26 for code-mixed Tamil texts securing 2nd place in the shared task. EmbeddingsSA exhibited maximum macro F1 score of 0.53 securing 2nd place for Tulu code-mixed texts.
MUCSD@DravidianLangTech2023: Predicting Sentiment in Social Media Text using Machine Learning Techniques
Sharal Coelho
|
Asha Hegde
|
Pooja Lamani
|
Kavya G
|
Hosahalli Lakshmaiah Shashirekha
Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages
User-generated social media texts are a blend of resource-rich languages like English and low-resource Dravidian languages like Tamil, Kannada, Tulu, etc. These texts referred to as code-mixing texts are enriching social media since they are written in two or more languages using either a common language script or various language scripts. However, due to the complex nature of the code-mixed text, in this paper, we - team MUCSD, describe a Machine learning (ML) models submitted to “Sentiment Analysis in Tamil and Tulu” shared task at DravidianLangTech@RANLP 2023. The proposed methodology makes use of ML models such as Linear Support Vector Classifier (LinearSVC), LR, and ensemble model (LR, DT, and SVM) to perform SA in Tamil and Tulu languages. The proposed LinearSVC model’s predictions submitted to the shared tasks, obtained 8th and 9th rank for Tamil-English and Tulu-English respectively.