Presenting high-level arguments is a crucial task for fostering participation in online societal discussions. Current argument summarization approaches miss an important facet of this task—capturing diversity—which is important for accommodating multiple perspectives. We introduce three aspects of diversity: those of opinions, annotators, and sources. We evaluate approaches to a popular argument summarization task called Key Point Analysis, which shows how these approaches struggle to (1) represent arguments shared by few people, (2) deal with data from various sources, and (3) align with subjectivity in human-provided annotations. We find that both general-purpose LLMs and dedicated KPA models exhibit this behavior, but have complementary strengths. Further, we observe that diversification of training data may ameliorate generalization in zero-shot cases. Addressing diversity in argument summarization requires a mix of strategies to deal with subjectivity.
Active Learning (AL) addresses the high costs of collecting human annotations by strategically annotating the most informative samples. However, for subjective NLP tasks, incorporating a wide range of perspectives in the annotation process is crucial to capture the variability in human judgments. We introduce Annotator-Centric Active Learning (ACAL), which incorporates an annotator selection strategy following data sampling. Our objective is two-fold: (1) to efficiently approximate the full diversity of human judgments, and (2) to assess model performance using annotator-centric metrics, which value minority and majority perspectives equally. We experiment with multiple annotator selection strategies across seven subjective NLP tasks, employing both traditional and novel, human-centered evaluation metrics. Our findings indicate that ACAL improves data efficiency and excels in annotator-centric performance evaluations. However, its success depends on the availability of a sufficiently large and diverse pool of annotators to sample from.
Recent advances in NLP show that language models retain a discernible level of knowledge in deontological ethics and moral norms. However, existing works often treat morality as binary, ranging from right to wrong. This simplistic view does not capture the nuances of moral judgment. Pluralist moral philosophers argue that human morality can be deconstructed into a finite number of elements, respecting individual differences in moral judgment. In line with this view, we build a pluralist moral sentence embedding space via a state-of-the-art contrastive learning approach. We systematically investigate the embedding space by studying the emergence of relationships among moral elements, both quantitatively and qualitatively. Our results show that a pluralist approach to morality can be captured in an embedding space. However, moral pluralism is challenging to deduce via self-supervision alone and requires a supervised approach with human labels.
Moral rhetoric influences our judgement. Although social scientists recognize moral expression as domain specific, there are no systematic methods for analyzing whether a text classifier learns the domain-specific expression of moral language or not. We propose Tomea, a method to compare a supervised classifier’s representation of moral rhetoric across domains. Tomea enables quantitative and qualitative comparisons of moral rhetoric via an interpretable exploration of similarities and differences across moral concepts and domains. We apply Tomea on moral narratives in thirty-five thousand tweets from seven domains. We extensively evaluate the method via a crowd study, a series of cross-domain moral classification comparisons, and a qualitative analysis of cross-domain moral expression.
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Moral values influence how we interpret and act upon the information we receive. Identifying human moral values is essential for artificially intelligent agents to co-exist with humans. Recent progress in natural language processing allows the identification of moral values in textual discourse. However, domain-specific moral rhetoric poses challenges for transferring knowledge from one domain to another. We provide the first extensive investigation on the effects of cross-domain classification of moral values from text. We compare a state-of-the-art deep learning model (BERT) in seven domains and four cross-domain settings. We show that a value classifier can generalize and transfer knowledge to novel domains, but it can introduce catastrophic forgetting. We also highlight the typical classification errors in cross-domain value classification and compare the model predictions to the annotators agreement. Our results provide insights to computer and social scientists that seek to identify moral rhetoric specific to a domain of discourse.
Software developers and testers have long struggled with how to elicit proactive responses from their coworkers when reviewing code for security vulnerabilities and errors. For a code review to be successful, it must not only identify potential problems but also elicit an active response from the colleague responsible for modifying the code. To understand the factors that contribute to this outcome, we analyze a novel dataset of more than one million code reviews for the Google Chromium project, from which we extract linguistic features of feedback that elicited responsive actions from coworkers. Using a manually-labeled subset of reviewer comments, we trained a highly accurate classifier to identify acted-upon comments (AUC = 0.85). Our results demonstrate the utility of our dataset, the feasibility of using NLP for this new task, and the potential of NLP to improve our understanding of how communications between colleagues can be authored to elicit positive, proactive responses.