Puli Chen
2024
Can ChatGPT’s Performance be Improved on Verb Metaphor Detection Tasks? Bootstrapping and Combining Tacit Knowledge
Cheng Yang
|
Puli Chen
|
Qingbao Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Metaphors detection, as an important task in the field of NLP, has been receiving sustained academic attention in recent years. Current researches focus supervised metaphors detection systems, which usually require large-scale, high-quality labeled data support. The emerge of large language models (e.g., ChatGPT) has made many NLP tasks (e.g., automatic summarization and dialogue systems) a qualitative leap. However, it is worth noting that the use of ChatGPT for unsupervised metaphors detection is often challenged with less-than-expected performance. Therefore, the aim of our work is to explore how to bootstrap and combine ChatGPT by detecting the most prevalent verb metaphors among metaphors. Our approach first utilizes ChatGPT to obtain literal collocations of target verbs and subject-object pairs of verbs in the text to be detected. Subsequently, these literal collocations and subject-object pairs are mapped to the same set of topics, and finally the verb metaphors are detected through the analysis of entailment relations. The experimental results show that our method achieves the best performance on the unsupervised verb metaphors detection task compared to existing unsupervised methods or direct prediction using ChatGPT. Our code is available at https://github.com/VILAN-Lab/Unsupervised-Metaphor-Detection.
Merely Judging Metaphor is Not Enough: Research on Reasonable Metaphor Detection
Puli Chen
|
Cheng Yang
|
Qingbao Huang
Findings of the Association for Computational Linguistics: EMNLP 2024
Metaphor, as an advanced form of cognition, is challenging to understand their meaning. Current metaphor detection tasks only provide labels (i.e., metaphor or literal) without interpreting how to understand them. In this paper, we improve the metaphor detection task and explore the reason of metaphor. To the best of our knowledge, we are the first work to reason about metaphor using mainstream Large Language Models (LLMs). Specifically, we utilized ChatGPT3.5 to expand the mainstream datasets in current metaphor detection, including VUA ALL, TroFi, and MOH-X. We input the original sentence, target word, and usage (metaphor or literal) into ChatGPT, guiding it to generate corresponding metaphor reason. Then, we designed supervised baseline experiments (e.g., RoBERTa, GPT-2) and zero-shot experiments with LLMs (e.g., LLaMA3). For the results generated by the above experiments, we provided the case study. We devised four methods that include manual evaluation to evaluate the reason performance of the model, and discussed extensively the advantages and disadvantages of these evaluation methods. Our code is available at https://github.com/yc-cy/Metaphorical-Reasoning.