Qimai Li
2020
Unknown Intent Detection Using Gaussian Mixture Model with an Application to Zero-shot Intent Classification
Lu Fan
|
Guangfeng Yan
|
Qimai Li
|
Han Liu
|
Xiaotong Zhang
|
Albert Y.S. Lam
|
Xiao-Ming Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
User intent classification plays a vital role in dialogue systems. Since user intent may frequently change over time in many realistic scenarios, unknown (new) intent detection has become an essential problem, where the study has just begun. This paper proposes a semantic-enhanced Gaussian mixture model (SEG) for unknown intent detection. In particular, we model utterance embeddings with a Gaussian mixture distribution and inject dynamic class semantic information into Gaussian means, which enables learning more class-concentrated embeddings that help to facilitate downstream outlier detection. Coupled with a density-based outlier detection algorithm, SEG achieves competitive results on three real task-oriented dialogue datasets in two languages for unknown intent detection. On top of that, we propose to integrate SEG as an unknown intent identifier into existing generalized zero-shot intent classification models to improve their performance. A case study on a state-of-the-art method, ReCapsNet, shows that SEG can push the classification performance to a significantly higher level.
2019
Reconstructing Capsule Networks for Zero-shot Intent Classification
Han Liu
|
Xiaotong Zhang
|
Lu Fan
|
Xuandi Fu
|
Qimai Li
|
Xiao-Ming Wu
|
Albert Y.S. Lam
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Intent classification is an important building block of dialogue systems. With the burgeoning of conversational AI, existing systems are not capable of handling numerous fast-emerging intents, which motivates zero-shot intent classification. Nevertheless, research on this problem is still in the incipient stage and few methods are available. A recently proposed zero-shot intent classification method, IntentCapsNet, has been shown to achieve state-of-the-art performance. However, it has two unaddressed limitations: (1) it cannot deal with polysemy when extracting semantic capsules; (2) it hardly recognizes the utterances of unseen intents in the generalized zero-shot intent classification setting. To overcome these limitations, we propose to reconstruct capsule networks for zero-shot intent classification. First, we introduce a dimensional attention mechanism to fight against polysemy. Second, we reconstruct the transformation matrices for unseen intents by utilizing abundant latent information of the labeled utterances, which significantly improves the model generalization ability. Experimental results on two task-oriented dialogue datasets in different languages show that our proposed method outperforms IntentCapsNet and other strong baselines.
Search
Fix data
Co-authors
- Lu Fan 2
- Albert Y.S. Lam 2
- Han Liu 2
- Xiao-Ming Wu 2
- Xiaotong Zhang 2
- show all...