Quintino F. Lotito
2017
FBK’s Multilingual Neural Machine Translation System for IWSLT 2017
Surafel M. Lakew
|
Quintino F. Lotito
|
Marco Turchi
|
Matteo Negri
|
Marcello Federico
Proceedings of the 14th International Conference on Spoken Language Translation
Neural Machine Translation has been shown to enable inference and cross-lingual knowledge transfer across multiple language directions using a single multilingual model. Focusing on this multilingual translation scenario, this work summarizes FBK’s participation in the IWSLT 2017 shared task. Our submissions rely on two multilingual systems trained on five languages (English, Dutch, German, Italian, and Romanian). The first one is a 20 language direction model, which handles all possible combinations of the five languages. The second multilingual system is trained only on 16 directions, leaving the others as zero-shot translation directions (i.e representing a more complex inference task on language pairs not seen at training time). More specifically, our zero-shot directions are Dutch$German and Italian$Romanian (resulting in four language combinations). Despite the small amount of parallel data used for training these systems, the resulting multilingual models are effective, even in comparison with models trained separately for every language pair (i.e. in more favorable conditions). We compare and show the results of the two multilingual models against a baseline single language pair systems. Particularly, we focus on the four zero-shot directions and show how a multilingual model trained with small data can provide reasonable results. Furthermore, we investigate how pivoting (i.e using a bridge/pivot language for inference in a source!pivot!target translations) using a multilingual model can be an alternative to enable zero-shot translation in a low resource setting.
Improving Zero-Shot Translation of Low-Resource Languages
Surafel M. Lakew
|
Quintino F. Lotito
|
Matteo Negri
|
Marco Turchi
|
Marcello Federico
Proceedings of the 14th International Conference on Spoken Language Translation
Recent work on multilingual neural machine translation reported competitive performance with respect to bilingual models and surprisingly good performance even on (zero-shot) translation directions not observed at training time. We investigate here a zero-shot translation in a particularly low-resource multilingual setting. We propose a simple iterative training procedure that leverages a duality of translations directly generated by the system for the zero-shot directions. The translations produced by the system (sub-optimal since they contain mixed language from the shared vocabulary), are then used together with the original parallel data to feed and iteratively re-train the multilingual network. Over time, this allows the system to learn from its own generated and increasingly better output. Our approach shows to be effective in improving the two zero-shot directions of our multilingual model. In particular, we observed gains of about 9 BLEU points over a baseline multilingual model and up to 2.08 BLEU over a pivoting mechanism using two bilingual models. Further analysis shows that there is also a slight improvement in the non-zero-shot language directions.