Ran He


2024

pdf bib
DeVAn: Dense Video Annotation for Video-Language Models
Tingkai Liu | Yunzhe Tao | Haogeng Liu | Qihang Fang | Ding Zhou | Huaibo Huang | Ran He | Hongxia Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a novel human annotated dataset for evaluating the ability for visual-language models to generate both short and long descriptions for real-world video clips, termed DeVAn (Dense Video Annotation). The dataset contains 8.5K YouTube video clips of 20-60 seconds in duration and covers a wide range of topics and interests. Each video clip is independently annotated by 5 human annotators, producing both captions (1 sentence) and summaries (3-10 sentences). Given any video selected from the dataset and its corresponding ASR information, we evaluate visual-language models on either caption or summary generation that is grounded in both the visual and auditory content of the video. Additionally, models are also evaluated on caption- and summary-based retrieval tasks, where the summary-based retrieval task requires the identification of a target video given excerpts of a given summary. Given the novel nature of the paragraph-length video summarization task, we compared different existing evaluation metrics and their alignment with human preferences and found that model-based evaluation metrics provide more semantically-oriented and human-aligned evaluation. Finally, we benchmarked a wide range of current video-language models on DeVAn, and we aim for DeVAn to serve as a useful evaluation set in the age of large language models and complex multi-modal tasks. Code is available at https://github.com/TK-21st/DeVAn.

pdf bib
InfiMM: Advancing Multimodal Understanding with an Open-Sourced Visual Language Model
Haogeng Liu | Quanzeng You | Yiqi Wang | Xiaotian Han | Bohan Zhai | Yongfei Liu | Wentao Chen | Yiren Jian | Yunzhe Tao | Jianbo Yuan | Ran He | Hongxia Yang
Findings of the Association for Computational Linguistics: ACL 2024

In this work, we present InfiMM, an advanced Multimodal Large Language Model that adapts to intricate vision-language tasks. InfiMM, inspired by the Flamingo architecture, distinguishes itself through the utilization of large-scale training data, comprehensive training strategies, and diverse large language models. This approach ensures the preservation of Flamingo’s foundational strengths while simultaneously introducing augmented capabilities. Empirical evaluations across a variety of benchmarks underscore InfiMM’s remarkable capability in multimodal understanding. The code can be found at: https://anonymous.4open.science/r/infimm-zephyr-F60C/.