Riley Carlson
2023
Do “English” Named Entity Recognizers Work Well on Global Englishes?
Alexander Shan
|
John Bauer
|
Riley Carlson
|
Christopher Manning
Findings of the Association for Computational Linguistics: EMNLP 2023
The vast majority of the popular English named entity recognition (NER) datasets contain American or British English data, despite the existence of many global varieties of English. As such, it is unclear whether they generalize for analyzing use of English globally. To test this, we build a newswire dataset, the Worldwide English NER Dataset, to analyze NER model performance on low-resource English variants from around the world. We test widely used NER toolkits and transformer models, including models using the pre-trained contextual models RoBERTa and ELECTRA, on three datasets: a commonly used British English newswire dataset, CoNLL 2003, a more American focused dataset OntoNotes, and our global dataset. All models trained on the CoNLL or OntoNotes datasets experienced significant performance drops—over 10 F1 in some cases—when tested on the Worldwide English dataset. Upon examination of region-specific errors, we observe the greatest performance drops for Oceania and Africa, while Asia and the Middle East had comparatively strong performance. Lastly, we find that a combined model trained on the Worldwide dataset and either CoNLL or OntoNotes lost only 1-2 F1 on both test sets.
2022
Systematicity in GPT-3’s Interpretation of Novel English Noun Compounds
Siyan Li
|
Riley Carlson
|
Christopher Potts
Findings of the Association for Computational Linguistics: EMNLP 2022
Levin et al. (2019) show experimentally that the interpretations of novel English noun compounds (e.g., stew skillet), while not fully compositional, are highly predictable based on whether the modifier and head refer to artifacts or natural kinds. Is the large language model GPT-3 governed by the same interpretive principles? To address this question, we first compare Levin et al.’s experimental data with GPT-3 generations, finding a high degree of similarity. However, this evidence is consistent with GPT-3 reasoning only about specific lexical items rather than the more abstract conceptual categories of Levin et al.’s theory. To probe more deeply, we construct prompts that require the relevant kind of conceptual reasoning. Here, we fail to find convincing evidence that GPT-3 is reasoning about more than just individual lexical items. These results highlight the importance of controlling for low-level distributional regularities when assessing whether a large language model latently encodes a deeper theory.
Search