Ritesh Singh Soun
2024
RISE: Robust Early-exiting Internal Classifiers for Suicide Risk Evaluation
Ritesh Singh Soun
|
Atula Tejaswi Neerkaje
|
Ramit Sawhney
|
Nikolaos Aletras
|
Preslav Nakov
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Suicide is a serious public health issue, but it is preventable with timely intervention. Emerging studies have suggested there is a noticeable increase in the number of individuals sharing suicidal thoughts online. As a result, utilising advance Natural Language Processing techniques to build automated systems for risk assessment is a viable alternative. However, existing systems are prone to incorrectly predicting risk severity and have no early detection mechanisms. Therefore, we propose RISE, a novel robust mechanism for accurate early detection of suicide risk by ensembling Hyperbolic Internal Classifiers equipped with an abstention mechanism and early-exit inference capabilities. Through quantitative, qualitative and ablative experiments, we demonstrate RISE as an efficient and robust human-in-the-loop approach for risk assessment over the Columbia Suicide Severity Risk Scale (C-SSRS) and CLPsych 2022 datasets. It is able to successfully abstain from 84% incorrect predictions on Reddit data while out-predicting state of the art models upto 3.5x earlier.