Riza Batista-navarro
2023
Entity Coreference and Co-occurrence Aware Argument Mining from Biomedical Literature
Boyang Liu
|
Viktor Schlegel
|
Riza Batista-navarro
|
Sophia Ananiadou
Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)
Biomedical argument mining (BAM) aims at automatically identifying the argumentative structure in biomedical texts. However, identifying and classifying argumentative relations (AR) between argumentative components (AC) is challenging since it not only needs to understand the semantics of ACs but also need to capture the interactions between them. We argue that entities can serve as bridges that connect different ACs since entities and their mentions convey significant semantic information in biomedical argumentation. For example, it is common that related AC pairs share a common entity. Capturing such entity information can be beneficial for the Relation Identification (RI) task. In order to incorporate this entity information into BAM, we propose an Entity Coreference and Co-occurrence aware Argument Mining (ECCAM) framework based on an edge-oriented graph model for BAM. We evaluate our model on a benchmark dataset and from the experimental results we find that our method improves upon state-of-the-art methods.
Identifying the limits of transformers when performing model-checking with natural language
Tharindu Madusanka
|
Riza Batista-navarro
|
Ian Pratt-hartmann
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Can transformers learn to comprehend logical semantics in natural language? Although many strands of work on natural language inference have focussed on transformer models’ ability to perform reasoning on text, the above question has not been answered adequately. This is primarily because the logical problems that have been studied in the context of natural language inference have their computational complexity vary with the logical and grammatical constructs within the sentences. As such, it is difficult to access whether the difference in accuracy is due to logical semantics or the difference in computational complexity. A problem that is much suited to address this issue is that of the model-checking problem, whose computational complexity remains constant (for fragments derived from first-order logic). However, the model-checking problem remains untouched in natural language inference research. Thus, we investigated the problem of model-checking with natural language to adequately answer the question of how the logical semantics of natural language affects transformers’ performance. Our results imply that the language fragment has a significant impact on the performance of transformer models. Furthermore, we hypothesise that a transformer model can at least partially understand the logical semantics in natural language but can not completely learn the rules governing the model-checking algorithm.