Rodolfo Joel Zevallos

Also published as: Rodolfo Joel Zevallos


2024

pdf bib
QUESPA Submission for the IWSLT 2024 Dialectal and Low-resource Speech Translation Task
John E. Ortega | Rodolfo Joel Zevallos | Ibrahim Said Ahmad | William Chen
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

This article describes the QUESPA team speech translation (ST) submissions for the Quechua to Spanish (QUE–SPA) track featured in the Evaluation Campaign of IWSLT 2024: dialectal and low-resource speech translation. Two main submission types were supported in the campaign: constrained and unconstrained. This is our second year submitting our ST systems to the IWSLT shared task and we feel that we have achieved novel performance, surpassing last year’s submissions. Again, we were able to submit six total systems of which our best (primary) constrained system consisted of an ST model based on the Fairseq S2T framework where the audio representations were created using log mel-scale filter banks as features and the translations were performed using a transformer. The system was similar to last year’s submission with slight configuration changes, allowing us to achieve slightly higher performance (2 BLEU). Contrastingly, we were able to achieve much better performance than last year on the unconstrained task using a larger pre-trained language (PLM) model for ST (without cascading) and the inclusion of parallel QUE–SPA data found on the internet. The fine-tuning of Microsoft’s SpeechT5 model in a ST setting along with the addition of new data and a data augmentation technique allowed us to achieve 19.7 BLEU. Additionally, we present the other four submissions (2 constrained and 2 unconstrained) which are part of additional efforts of hyper-parameter and configuration tuning on existent models and the inclusion of Whisper for speech recognition

pdf bib
Evaluating Self-Supervised Speech Representations for Indigenous American Languages
Chih-Chen Chen | William Chen | Rodolfo Joel Zevallos | John E. Ortega
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The application of self-supervision to speech representation learning has garnered significant interest in recent years, due to its scalability to large amounts of unlabeled data. However, much progress, both in terms of pre-training and downstream evaluation, has remained concentrated in monolingual models that only consider English. Few models consider other languages, and even fewer consider indigenous ones. In this work, benchmark the efficacy of large SSL models on 6 indigenous America languages: Quechua, Guarani , Bribri, Kotiria, Wa’ikhana, and Totonac on low-resource ASR. Our results show surprisingly strong performance by state-of-the-art SSL models, showing the potential generalizability of large-scale models to real-world data.

pdf bib
Related Work Is All You Need
Rodolfo Joel Zevallos | John E. Ortega | Benjamin Irving
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In modern times, generational artificial intelligence is used in several industries and by many people. One use case that can be considered important but somewhat redundant is the act of searching for related work and other references to cite. As an avenue to better ascertain the value of citations and their corresponding locations, we focus on the common “related work” section as a focus of experimentation with the overall objective to generate the section. In this article, we present a corpus with 400k annotations of that distinguish related work from the rest of the references. Additionally, we show that for the papers in our experiments, the related work section represents the paper just as good, and in many cases, better than the rest of the references. We show that this is the case for more than 74% of the articles when using cosine similarity to measure the distance between two common graph neural network algorithms: Prone and Specter.