Correctly inflecting determiners and adjectives so that they agree with the noun in nominal phrases (NPs) is a big challenge for learners of German. Given the increasing number of available learner corpora, a large-scale corpus-based study on the acquisition of this aspect of German morphosyntax would be desirable. In this paper, we present a pilot study in which we investigate how well nouns, their grammatical heads and the dependents that have to agree with the noun can be extracted automatically via dependency parsing. For six samples of the German learner corpus MERLIN (one per proficiency level), we found that in spite of many ungrammatical sentences in texts of low proficiency levels, human annotators find only few true ambiguities that would make the extraction of NPs and their heads infeasible. The automatic parsers, however, perform rather poorly on extracting the relevant elements for texts on CEFR levels A1-B1 (< 70%) but quite well from level B2 onwards ( 90%). We discuss the sources of errors and how performance could potentially be increased in the future.
This article deals with the syntactic analysis of German-language poetry from different centuries. We use Universal Dependencies (UD) as our syntactic framework. We discuss particular challenges of the poems in terms of tokenization, sentence boundary recognition and special syntactic constructions. Our annotated corpus currently consists of 20 poems with a total of 2,162 tokens, which originate from the PoeTree.de corpus. We present some statistics on our annotations and also evaluate the automatic UD annotation from PoeTree.de using our annotations.
This paper addresses the problem of providing automatic feedback on orthographic errors in handwritten text. Despite the availability of automatic error detection systems, the practical problem of digitizing the handwriting remains. Current handwriting recognition (HWR) systems produce highly accurate transcriptions but normalize away the very errors that are essential for providing useful feedback, e.g. orthographic errors. Our contribution is twofold:First, we create a comprehensive dataset of handwritten text with transcripts retaining orthographic errors by transcribing 1,350 pages from the German learner dataset FD-LEX. Second, we train a simple HWR system on our dataset, allowing it to transcribe words with orthographic errors. Thereby, we evaluate the effect of different dictionaries on recognition output, highlighting the importance of addressing spelling errors in these dictionaries.
Handwritten texts produced by young learners often contain orthographic features like spelling errors, capitalization errors, punctuation errors, and impurities such as strikethroughs, inserts, and smudges. All of those are typically normalized or ignored in existing transcriptions. For applications like handwriting recognition with the goal of automatically analyzing a learner’s language performance, however, retaining such features would be necessary. To address this, we present transcription guidelines that retain the features addressed above. Our guidelines were developed iteratively and include numerous example images to illustrate the various issues. On a subset of about 90 double-transcribed texts, we compute inter-annotator agreement and show that our guidelines can be applied with high levels of percentage agreement of about .98. Overall, we transcribed 1,350 learner texts, which is about the same size as the widely adopted handwriting recognition datasets IAM (1,500 pages) and CVL (1,600 pages). Our final corpus can be used to train a handwriting recognition system that transcribes closely to the real productions by young learners. Such a system is a prerequisite for applying automatic orthography feedback systems to handwritten texts in the future.
When listening comprehension is tested as a free-text production task, a challenge for scoring the answers is the resulting wide range of spelling variants. When judging whether a variant is acceptable or not, human raters perform a complex holistic decision. In this paper, we present a corpus study in which we analyze human acceptability decisions in a high stakes test for German. We show that for human experts, spelling variants are harder to score consistently than other answer variants. Furthermore, we examine how the decision can be operationalized using features that could be applied by an automatic scoring system. We show that simple measures like edit distance and phonetic similarity between a given answer and the target answer can model the human acceptability decisions with the same inter-annotator agreement as humans, and discuss implications of the remaining inconsistencies.
Spellchecking text written by language learners is especially challenging because errors made by learners differ both quantitatively and qualitatively from errors made by already proficient learners. We introduce LeSpell, a multi-lingual (English, German, Italian, and Czech) evaluation data set of spelling mistakes in context that we compiled from seven underlying learner corpora. Our experiments show that existing spellcheckers do not work well with learner data. Thus, we introduce a highly customizable spellchecking component for the DKPro architecture, which improves performance in many settings.
To date, corpus and computational linguistic work on written language acquisition has mostly dealt with second language learners who have usually already mastered orthography acquisition in their first language. In this paper, we present the Litkey Corpus, a richly-annotated longitudinal corpus of written texts produced by primary school children in Germany from grades 2 to 4. The paper focuses on the (semi-)automatic annotation procedure at various linguistic levels, which include POS tags, features of the word-internal structure (phonemes, syllables, morphemes) and key orthographic features of the target words as well as a categorization of spelling errors. Comprehensive evaluations show that high accuracy was achieved on all levels, making the Litkey Corpus a useful resource for corpus-based research on literacy acquisition of German primary school children and for developing NLP tools for educational purposes. The corpus is freely available under https://www.linguistics.rub.de/litkeycorpus/.
NLP applications for learners often rely on annotated learner corpora. Thereby, it is important that the annotations are both meaningful for the task, and consistent and reliable. We present a new longitudinal L1 learner corpus for German (handwritten texts collected in grade 2–4), which is transcribed and annotated with a target hypothesis that strictly only corrects orthographic errors, and is thereby tailored to research and tool development for orthographic issues in primary school. While for most corpora, transcription and target hypothesis are not evaluated, we conducted a detailed inter-annotator agreement study for both tasks. Although we achieved high agreement, our discussion of cases of disagreement shows that even with detailed guidelines, annotators differ here and there for different reasons, which should also be considered when working with transcriptions and target hypotheses of other corpora, especially if no explicit guidelines for their construction are known.