Rricha Jalota


2023

pdf bib
Translating away Translationese without Parallel Data
Rricha Jalota | Koel Chowdhury | Cristina España-Bonet | Josef van Genabith
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Translated texts exhibit systematic linguistic differences compared to original texts in the same language, and these differences are referred to as translationese. Translationese has effects on various cross-lingual natural language processing tasks, potentially leading to biased results. In this paper, we explore a novel approach to reduce translationese in translated texts: translation-based style transfer. As there are no parallel human-translated and original data in the same language, we use a self-supervised approach that can learn from comparable (rather than parallel) mono-lingual original and translated data. However, even this self-supervised approach requires some parallel data for validation. We show how we can eliminate the need for parallel validation data by combining the self-supervised loss with an unsupervised loss. This unsupervised loss leverages the original language model loss over the style-transferred output and a semantic similarity loss between the input and style-transferred output. We evaluate our approach in terms of original vs. translationese binary classification in addition to measuring content preservation and target-style fluency. The results show that our approach is able to reduce translationese classifier accuracy to a level of a random classifier after style transfer while adequately preserving the content and fluency in the target original style.

2022

pdf bib
Towards Debiasing Translation Artifacts
Koel Dutta Chowdhury | Rricha Jalota | Cristina España-Bonet | Josef Genabith
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Cross-lingual natural language processing relies on translation, either by humans or machines, at different levels, from translating training data to translating test sets. However, compared to original texts in the same language, translations possess distinct qualities referred to as translationese. Previous research has shown that these translation artifacts influence the performance of a variety of cross-lingual tasks. In this work, we propose a novel approach to reducing translationese by extending an established bias-removal technique. We use the Iterative Null-space Projection (INLP) algorithm, and show by measuring classification accuracy before and after debiasing, that translationese is reduced at both sentence and word level. We evaluate the utility of debiasing translationese on a natural language inference (NLI) task, and show that by reducing this bias, NLI accuracy improves. To the best of our knowledge, this is the first study to debias translationese as represented in latent embedding space.

pdf bib
Mitigating Learnerese Effects for CEFR Classification
Rricha Jalota | Peter Bourgonje | Jan Van Sas | Huiyan Huang
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

The role of an author’s L1 in SLA can be challenging for automated CEFR classification, in that texts from different L1 groups may be too heterogeneous to combine them as training data. We experiment with recent debiasing approaches by attempting to devoid textual representations of L1 features. This results in a more homogeneous group when aggregating CEFR-annotated texts from different L1 groups, leading to better classification performance. Using iterative null-space projection, we marginally improve classification performance for a linear classifier by 1 point. An MLP (e.g. non-linear) classifier remains unaffected by this procedure. We discuss possible directions of future work to attempt to increase this performance gain.