Rundong Gao


2024

pdf bib
LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
Yuchi Wang | Shuhuai Ren | Rundong Gao | Linli Yao | Qingyan Guo | Kaikai An | Jianhong Bai | Xu Sun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.

2022

pdf bib
Holistic Sentence Embeddings for Better Out-of-Distribution Detection
Sishuo Chen | Xiaohan Bi | Rundong Gao | Xu Sun
Findings of the Association for Computational Linguistics: EMNLP 2022

Detecting out-of-distribution (OOD) instances is significant for the safe deployment of NLP models. Among recent textual OOD detection works based on pretrained language models (PLMs), distance-based methods have shown superior performance. However, they estimate sample distance scores in the last-layer CLS embedding space and thus do not make full use of linguistic information underlying in PLMs. To address the issue, we propose to boost OOD detection by deriving more holistic sentence embeddings. On the basis of the observations that token averaging and layer combination contribute to improving OOD detection, we propose a simple embedding approach named Avg-Avg, which averages all token representations from each intermediate layer as the sentence embedding and significantly surpasses the state-of-the-art on a comprehensive suite of benchmarks by a 9.33% FAR95 margin. Furthermore, our analysis demonstrates that it indeed helps preserve general linguistic knowledge in fine-tuned PLMs and substantially benefits detecting background shifts. The simple yet effective embedding method can be applied to fine-tuned PLMs with negligible extra costs, providing a free gain in OOD detection. Our code is available at https://github.com/lancopku/Avg-Avg.