Russell Power


2018

pdf bib
Content-Based Citation Recommendation
Chandra Bhagavatula | Sergey Feldman | Russell Power | Waleed Ammar
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present a content-based method for recommending citations in an academic paper draft. We embed a given query document into a vector space, then use its nearest neighbors as candidates, and rerank the candidates using a discriminative model trained to distinguish between observed and unobserved citations. Unlike previous work, our method does not require metadata such as author names which can be missing, e.g., during the peer review process. Without using metadata, our method outperforms the best reported results on PubMed and DBLP datasets with relative improvements of over 18% in F1@20 and over 22% in MRR. We show empirically that, although adding metadata improves the performance on standard metrics, it favors self-citations which are less useful in a citation recommendation setup. We release an online portal for citation recommendation based on our method, (URL: http://bit.ly/citeDemo) and a new dataset OpenCorpus of 7 million research articles to facilitate future research on this task.

2017

pdf bib
Semi-supervised sequence tagging with bidirectional language models
Matthew E. Peters | Waleed Ammar | Chandra Bhagavatula | Russell Power
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pretrained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers.

pdf bib
The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction
Waleed Ammar | Matthew E. Peters | Chandra Bhagavatula | Russell Power
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes our submission for the ScienceIE shared task (SemEval- 2017 Task 10) on entity and relation extraction from scientific papers. Our model is based on the end-to-end relation extraction model of Miwa and Bansal (2016) with several enhancements such as semi-supervised learning via neural language models, character-level encoding, gazetteers extracted from existing knowledge bases, and model ensembles. Our official submission ranked first in end-to-end entity and relation extraction (scenario 1), and second in the relation-only extraction (scenario 3).