Ryan Louie
2024
Roleplay-doh: Enabling Domain-Experts to Create LLM-simulated Patients via Eliciting and Adhering to Principles
Ryan Louie
|
Ananjan Nandi
|
William Fang
|
Cheng Chang
|
Emma Brunskill
|
Diyi Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent works leverage LLMs to roleplay realistic social scenarios, aiding novices in practicing their social skills. However, simulating sensitive interactions, such as in the domain of mental health, is challenging. Privacy concerns restrict data access, and collecting expert feedback, although vital, is laborious. To address this, we develop Roleplay-doh, a novel human-LLM collaboration pipeline that elicits qualitative feedback from a domain-expert, which is transformed into a set of principles, or natural language rules, that govern an LLM-prompted roleplay. We apply this pipeline to enable senior mental health supporters to create customized AI patients as simulated practice partners for novice counselors. After uncovering issues with basic GPT-4 simulations not adhering to expert-defined principles, we also introduce a novel principle-adherence prompting pipeline which shows a 30% improvement in response quality and principle following for the downstream task. Through a user study with 25 counseling experts, we demonstrate that the pipeline makes it easy and effective to create AI patients that more faithfully resemble real patients, as judged by both creators and third-party counselors. We provide access to the code and data on our project website: https://roleplay-doh.github.io/.
Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors
Alicja Chaszczewicz
|
Raj Shah
|
Ryan Louie
|
Bruce Arnow
|
Robert Kraut
|
Diyi Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
Search
Co-authors
- Diyi Yang 2
- Ananjan Nandi 1
- William Fang 1
- Cheng Chang 1
- Emma Brunskill 1
- show all...