Sagar Uprety
2022
Beyond Emotion: A Multi-Modal Dataset for Human Desire Understanding
Ao Jia
|
Yu He
|
Yazhou Zhang
|
Sagar Uprety
|
Dawei Song
|
Christina Lioma
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Desire is a strong wish to do or have something, which involves not only a linguistic expression, but also underlying cognitive phenomena driving human feelings. As the most primitive and basic human instinct, conscious desire is often accompanied by a range of emotional responses. As a strikingly understudied task, it is difficult for machines to model and understand desire due to the unavailability of benchmarking datasets with desire and emotion labels. To bridge this gap, we present MSED, the first multi-modal and multi-task sentiment, emotion and desire dataset, which contains 9,190 text-image pairs, with English text. Each multi-modal sample is annotated with six desires, three sentiments and six emotions. We also propose the state-of-the-art baselines to evaluate the potential of MSED and show the importance of multi-task and multi-modal clues for desire understanding. We hope this study provides a benchmark for human desire analysis. MSED will be publicly available for research.
2018
Quantum-Inspired Complex Word Embedding
Qiuchi Li
|
Sagar Uprety
|
Benyou Wang
|
Dawei Song
Proceedings of the Third Workshop on Representation Learning for NLP
A challenging task for word embeddings is to capture the emergent meaning or polarity of a combination of individual words. For example, existing approaches in word embeddings will assign high probabilities to the words “Penguin” and “Fly” if they frequently co-occur, but it fails to capture the fact that they occur in an opposite sense - Penguins do not fly. We hypothesize that humans do not associate a single polarity or sentiment to each word. The word contributes to the overall polarity of a combination of words depending upon which other words it is combined with. This is analogous to the behavior of microscopic particles which exist in all possible states at the same time and interfere with each other to give rise to new states depending upon their relative phases. We make use of the Hilbert Space representation of such particles in Quantum Mechanics where we subscribe a relative phase to each word, which is a complex number, and investigate two such quantum inspired models to derive the meaning of a combination of words. The proposed models achieve better performances than state-of-the-art non-quantum models on binary sentence classification tasks.