Saiteja Utpala
2024
Language Agnostic Code Embeddings
Saiteja Utpala
|
Alex Gu
|
Pin-Yu Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Recently, code language models have achieved notable advancements in addressing a diverse array of essential code comprehension and generation tasks. Yet, the field lacks a comprehensive deep dive and understanding of the code embeddings of multilingual code models. In this paper, we present a comprehensive study on multilingual code embeddings, focusing on the cross-lingual capabilities of these embeddings across different programming languages. Through probing experiments, we demonstrate that code embeddings comprise two distinct components: one deeply tied to the nuances and syntax of a specific language, and the other remaining agnostic to these details, primarily focusing on semantics. Further, we show that when we isolate and eliminate this language-specific component, we witness significant improvements in downstream code retrieval tasks, leading to an absolute increase of up to +17 in the Mean Reciprocal Rank (MRR).
2023
Locally Differentially Private Document Generation Using Zero Shot Prompting
Saiteja Utpala
|
Sara Hooker
|
Pin-Yu Chen
Findings of the Association for Computational Linguistics: EMNLP 2023
Numerous studies have highlighted the privacy risks associated with large language models. Our research offers a unique perspective by demonstrating that pretrained large language models can effectively contribute to privacy preservation. We propose a locally differentially private mechanism called DP-Prompt, which leverages the power of pretrained large language models and zero-shot prompting to counter author de-anonymization attacks while minimizing the impact on downstream utility. When DP-Prompt is used with a powerful language model like ChatGPT (gpt-3.5), we observe a notable reduction in the success rate of de-anonymization attacks, showing that it surpasses existing approaches by a considerable margin despite its simpler design. For instance, in the case of the IMDB dataset, DP-Prompt (with ChatGPT) perfectly recovers the clean sentiment F1 score while achieving a 46% reduction in author identification F1 score against static attackers and a 26% reduction against adaptive attackers. We conduct extensive experiments across six open-source large language models, ranging up to 7 billion parameters, to analyze various effects of the privacy-utility tradeoff.
Search