Understanding whether a generated table is of good quality is important to be able to use it in creating or editing documents using automatic methods. In this work, we underline that existing measures for table quality evaluation fail to capture the overall semantics of the tables, and sometimes unfairly penalize good tables and reward bad ones. We propose TabEval, a novel table evaluation strategy that captures table semantics by first breaking down a table into a list of natural language atomic statements and then compares them with ground truth statements using entailment-based measures. To validate our approach, we curate a dataset comprising of text descriptions for 1,250 diverse Wikipedia tables, covering a range of topics and structures, in contrast to the limited scope of existing datasets. We compare TabEval with existing metrics using unsupervised and supervised text-to-table generation methods, demonstrating its stronger correlation with human judgments of table quality across four datasets.
Automatically generating a presentation from the text of a long document is a challenging and useful problem. In contrast to a flat summary, a presentation needs to have a better and non-linear narrative, i.e., the content of a slide can come from different and non-contiguous parts of the given document. However, it is difficult to incorporate such non-linear mapping of content to slides and ensure that the content is faithful to the document. LLMs are prone to hallucination and their performance degrades with the length of the input document. Towards this, we propose a novel graph based solution where we learn a graph from the input document and use a combination of graph neural network and LLM to generate a presentation with attribution of content for each slide. We conduct thorough experiments to show the merit of our approach compared to directly using LLMs for this task.
Generating presentation slides from a long document with multimodal elements such as text and images is an important task. This is time consuming and needs domain expertise if done manually. Existing approaches for generating a rich presentation from a document are often semi-automatic or only put a flat summary into the slides ignoring the importance of a good narrative. In this paper, we address this research gap by proposing a multi-staged end-to-end model which uses a combination of LLM and VLM. We have experimentally shown that compared to applying LLMs directly with state-of-the-art prompting, our proposed multi-staged solution is better in terms of automated metrics and human evaluation.
Scientific papers and slides are two different representations of the same underlying information, but both require substantial work to prepare. While there had been prior efforts on automating document-to-slides generation, there is still a pressing need of customizing the presentation of content aligning with the persona of target audience or duration of presentation. This paper first introduces the concept of end-user specification-aware document to slides conversion that incorporates end-user specifications into the conversion process. For this, we initially introduce a new dataset reuse the existing SciDuet dataset consisting of pairs of papers and corresponding slides decks from recent years’ *ACL conferences to create four persona-aware configurations. Secondly, we present Persona-Aware-D2S, a novel approach by finetuning LLMs using target audience feedback to create persona-aware slides from scientific documents. Our evaluation on both automated metrics and qualitative human evaluation suggests that by incorporating end-user specifications into the conversion process, our model can create presentations that are not only informative but also tailored to expectations and cognitive abilities of target audience.