Sami Itkonen
2022
Helsinki-NLP at SemEval-2022 Task 2: A Feature-Based Approach to Multilingual Idiomaticity Detection
Sami Itkonen
|
Jörg Tiedemann
|
Mathias Creutz
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
This paper describes the University of Helsinki submission to the SemEval 2022 task on multilingual idiomaticity detection. Our system utilizes several models made available by HuggingFace, along with the baseline BERT model for the task. We focus on feature engineering based on properties that typically characterize idiomatic expressions. The additional features lead to improvements over the baseline and the final submission achieves 15th place out of 20 submissions. The paper provides error analysis of our model including visualisations of the contributions of individual features.
2021
Coping with Noisy Training Data Labels in Paraphrase Detection
Teemu Vahtola
|
Mathias Creutz
|
Eetu Sjöblom
|
Sami Itkonen
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best results are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.