Sandeep Suntwal


2021

pdf bib
Students Who Study Together Learn Better: On the Importance of Collective Knowledge Distillation for Domain Transfer in Fact Verification
Mitch Paul Mithun | Sandeep Suntwal | Mihai Surdeanu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

While neural networks produce state-of-the- art performance in several NLP tasks, they generally depend heavily on lexicalized information, which transfer poorly between domains. Previous works have proposed delexicalization as a form of knowledge distillation to reduce the dependency on such lexical artifacts. However, a critical unsolved issue that remains is how much delexicalization to apply: a little helps reduce overfitting, but too much discards useful information. We propose Group Learning, a knowledge and model distillation approach for fact verification in which multiple student models have access to different delexicalized views of the data, but are encouraged to learn from each other through pair-wise consistency losses. In several cross-domain experiments between the FEVER and FNC fact verification datasets, we show that our approach learns the best delexicalization strategy for the given training dataset, and outperforms state-of-the-art classifiers that rely on the original data.

pdf bib
Data and Model Distillation as a Solution for Domain-transferable Fact Verification
Mitch Paul Mithun | Sandeep Suntwal | Mihai Surdeanu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

While neural networks produce state-of-the-art performance in several NLP tasks, they generally depend heavily on lexicalized information, which transfer poorly between domains. We present a combination of two strategies to mitigate this dependence on lexicalized information in fact verification tasks. We present a data distillation technique for delexicalization, which we then combine with a model distillation method to prevent aggressive data distillation. We show that by using our solution, not only does the performance of an existing state-of-the-art model remain at par with that of the model trained on a fully lexicalized data, but it also performs better than it when tested out of domain. We show that the technique we present encourages models to extract transferable facts from a given fact verification dataset.

2020

pdf bib
Towards the Necessity for Debiasing Natural Language Inference Datasets
Mithun Paul Panenghat | Sandeep Suntwal | Faiz Rafique | Rebecca Sharp | Mihai Surdeanu
Proceedings of the Twelfth Language Resources and Evaluation Conference

Modeling natural language inference is a challenging task. With large annotated data sets available it has now become feasible to train complex neural network based inference methods which achieve state of the art performance. However, it has been shown that these models also learn from the subtle biases inherent in these datasets (CITATION). In this work we explore two techniques for delexicalization that modify the datasets in such a way that we can control the importance that neural-network based methods place on lexical entities. We demonstrate that the proposed methods not only maintain the performance in-domain but also improve performance in some out-of-domain settings. For example, when using the delexicalized version of the FEVER dataset, the in-domain performance of a state of the art neural network method dropped only by 1.12% while its out-of-domain performance on the FNC dataset improved by 4.63%. We release the delexicalized versions of three common datasets used in natural language inference. These datasets are delexicalized using two methods: one which replaces the lexical entities in an overlap-aware manner, and a second, which additionally incorporates semantic lifting of nouns and verbs to their WordNet hypernym synsets

2019

pdf bib
On the Importance of Delexicalization for Fact Verification
Sandeep Suntwal | Mithun Paul | Rebecca Sharp | Mihai Surdeanu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While neural networks produce state-of-the-art performance in many NLP tasks, they generally learn from lexical information, which may transfer poorly between domains. Here, we investigate the importance that a model assigns to various aspects of data while learning and making predictions, specifically, in a recognizing textual entailment (RTE) task. By inspecting the attention weights assigned by the model, we confirm that most of the weights are assigned to noun phrases. To mitigate this dependence on lexicalized information, we experiment with two strategies of masking. First, we replace named entities with their corresponding semantic tags along with a unique identifier to indicate lexical overlap between claim and evidence. Second, we similarly replace other word classes in the sentence (nouns, verbs, adjectives, and adverbs) with their super sense tags (Ciaramita and Johnson, 2003). Our results show that, while performance on the in-domain dataset remains on par with that of the model trained on fully lexicalized data, it improves considerably when tested out of domain. For example, the performance of a state-of-the-art RTE model trained on the masked Fake News Challenge (Pomerleau and Rao, 2017) data and evaluated on Fact Extraction and Verification (Thorne et al., 2018) data improved by over 10% in accuracy score compared to the fully lexicalized model.