Sangdoo Yun


2024

pdf bib
TimeChara: Evaluating Point-in-Time Character Hallucination of Role-Playing Large Language Models
Jaewoo Ahn | Taehyun Lee | Junyoung Lim | Jin-Hwa Kim | Sangdoo Yun | Hwaran Lee | Gunhee Kim
Findings of the Association for Computational Linguistics: ACL 2024

While Large Language Models (LLMs) can serve as agents to simulate human behaviors (i.e., role-playing agents), we emphasize the importance of point-in-time role-playing. This situates characters at specific moments in the narrative progression for three main reasons: (i) enhancing users’ narrative immersion, (ii) avoiding spoilers, and (iii) fostering engagement in fandom role-playing. To accurately represent characters at specific time points, agents must avoid character hallucination, where they display knowledge that contradicts their characters’ identities and historical timelines. We introduce TimeChara, a new benchmark designed to evaluate point-in-time character hallucination in role-playing LLMs. Comprising 10,895 instances generated through an automated pipeline, this benchmark reveals significant hallucination issues in current state-of-the-art LLMs (e.g., GPT-4o). To counter this challenge, we propose Narrative-Experts, a method that decomposes the reasoning steps and utilizes narrative experts to reduce point-in-time character hallucinations effectively. Still, our findings with TimeChara highlight the ongoing challenges of point-in-time character hallucination, calling for further study.

pdf bib
TRAP: Targeted Random Adversarial Prompt Honeypot for Black-Box Identification
Martin Gubri | Dennis Ulmer | Hwaran Lee | Sangdoo Yun | Seong Joon Oh
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Model (LLM) services and models often come with legal rules on *who* can use them and *how* they must use them. Assessing the compliance of the released LLMs is crucial, as these rules protect the interests of the LLM contributor and prevent misuse. In this context, we describe the novel fingerprinting problem of Black-box Identity Verification (BBIV). The goal is to determine whether a third-party application uses a certain LLM through its chat function. We propose a method called Targeted Random Adversarial Prompt (TRAP) that identifies the specific LLM in use. We repurpose adversarial suffixes, originally proposed for jailbreaking, to get a pre-defined answer from the target LLM, while other models give random answers. TRAP detects the target LLMs with over 95% true positive rate at under 0.2% false positive rate even after a single interaction. TRAP remains effective even if the LLM has minor changes that do not significantly alter the original function.

pdf bib
Toward Interactive Regional Understanding in Vision-Large Language Models
Jungbeom Lee | Sanghyuk Chun | Sangdoo Yun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent Vision-Language Pre-training (VLP) models have demonstrated significant advancements. Nevertheless, these models heavily rely on image-text pairs that capture only coarse and global information of an image, leading to a limitation in their regional understanding ability. In this work, we introduce RegionVLM, equipped with explicit regional modeling capabilities, allowing them to understand user-indicated image regions. To achieve this, we design a simple yet innovative architecture, requiring no modifications to the model architecture or objective function. Additionally, we leverage a dataset that contains a novel source of information, namely Localized Narratives, which has been overlooked in previous VLP research. Our experiments demonstrate that our single generalist model not only achieves an interactive dialogue system but also exhibits superior performance on various zero-shot region understanding tasks, without compromising its ability for global image understanding.

pdf bib
Who Wrote this Code? Watermarking for Code Generation
Taehyun Lee | Seokhee Hong | Jaewoo Ahn | Ilgee Hong | Hwaran Lee | Sangdoo Yun | Jamin Shin | Gunhee Kim
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Since the remarkable generation performance of large language models raised ethical and legal concerns, approaches to detect machine-generated text by embedding watermarks are being developed.However, we discover that the existing works fail to function appropriately in code generation tasks due to the task’s nature of having low entropy.Extending a logit-modifying watermark method, we propose Selective WatErmarking via Entropy Thresholding (SWEET), which enhances detection ability and mitigates code quality degeneration by removing low-entropy segments at generating and detecting watermarks.Our experiments show that SWEET significantly improves code quality preservation while outperforming all baselines, including post-hoc detection methods, in detecting machine-generated code text.Our code is available inhttps://github.com/hongcheki/sweet-watermark.

pdf bib
Calibrating Large Language Models Using Their Generations Only
Dennis Ulmer | Martin Gubri | Hwaran Lee | Sangdoo Yun | Seong Oh
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) are increasingly deployed in user-facing applications, building trust and maintaining safety by accurately quantifying a model’s confidence in its prediction becomes even more important. However, finding effective ways to calibrate LLMs—especially when the only interface to the models is their generated text—remains a challenge. We propose APRICOT (Auxiliary prediction of confidence targets): A method to set confidence targets and train an additional model that predicts an LLM’s confidence based on its textual input and output alone. This approach has several advantages: It is conceptually simple, does not require access to the target model beyond its output, does not interfere with the language generation, and has a multitude of potential usages, for instance by verbalizing the predicted confidence or using it to re-prompting the LLM to accurately reflecting its uncertainty. We show how our approach performs competitively in terms of calibration error for white-box and black-box LLMs on closed-book question-answering to detect incorrect LLM answers.

2023

pdf bib
MPCHAT: Towards Multimodal Persona-Grounded Conversation
Jaewoo Ahn | Yeda Song | Sangdoo Yun | Gunhee Kim
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In order to build self-consistent personalized dialogue agents, previous research has mostly focused on textual persona that delivers personal facts or personalities. However, to fully describe the multi-faceted nature of persona, image modality can help better reveal the speaker’s personal characteristics and experiences in episodic memory (Rubin et al., 2003; Conway, 2009). In this work, we extend persona-based dialogue to the multimodal domain and make two main contributions. First, we present the first multimodal persona-based dialogue dataset named MPCHAT, which extends persona with both text and images to contain episodic memories. Second, we empirically show that incorporating multimodal persona, as measured by three proposed multimodal persona-grounded dialogue tasks (i.e., next response prediction, grounding persona prediction, and speaker identification), leads to statistically significant performance improvements across all tasks. Thus, our work highlights that multimodal persona is crucial for improving multimodal dialogue comprehension, and our MPCHAT serves as a high-quality resource for this research.

pdf bib
Visually-Situated Natural Language Understanding with Contrastive Reading Model and Frozen Large Language Models
Geewook Kim | Hodong Lee | Daehee Kim | Haeji Jung | Sanghee Park | Yoonsik Kim | Sangdoo Yun | Taeho Kil | Bado Lee | Seunghyun Park
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent advances in Large Language Models (LLMs) have stimulated a surge of research aimed at extending their applications to the visual domain. While these models exhibit promise in generating abstract image captions and facilitating natural conversations, their performance on text-rich images still requires improvement. In this paper, we introduce Contrastive Reading Model (Cream), a novel neural architecture designed to enhance the language-image understanding capability of LLMs by capturing intricate details that are often overlooked in existing methods. Cream combines vision and auxiliary encoders, fortified by a contrastive feature alignment technique, to achieve a more effective comprehension of language information in visually situated contexts within the images. Our approach bridges the gap between vision and language understanding, paving the way for the development of more sophisticated Document Intelligence Assistants. Through rigorous evaluations across diverse visually-situated language understanding tasks that demand reasoning capabilities, we demonstrate the compelling performance of Cream, positioning it as a prominent model in the field of visual document understanding. We provide our codebase and newly-generated datasets at https://github.com/naver-ai/cream.