Sarah Laszlo
2024
ViSAGe: A Global-Scale Analysis of Visual Stereotypes in Text-to-Image Generation
Akshita Jha
|
Vinodkumar Prabhakaran
|
Remi Denton
|
Sarah Laszlo
|
Shachi Dave
|
Rida Qadri
|
Chandan Reddy
|
Sunipa Dev
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent studies have shown that Text-to-Image (T2I) model generations can reflect social stereotypes present in the real world. However, existing approaches for evaluating stereotypes have a noticeable lack of coverage of global identity groups and their associated stereotypes. To address this gap, we introduce the ViSAGe (Visual Stereotypes Around the Globe) dataset to enable the evaluation of known nationality-based stereotypes in T2I models, across 135 nationalities. We enrich an existing textual stereotype resource by distinguishing between stereotypical associations that are more likely to have visual depictions, such as ‘sombrero’, from those that are less visually concrete, such as ‘attractive’. We demonstrate ViSAGe’s utility through a multi-faceted evaluation of T2I generations. First, we show that stereotypical attributes in ViSAGe are thrice as likely to be present in generated images of corresponding identities as compared to other attributes, and that the offensiveness of these depictions is especially higher for identities from Africa, South America, and South East Asia. Second, we assess the ‘stereotypical pull’ of visual depictions of identity groups, which reveals how the ‘default’ representations of all identity groups in ViSAGe have a pull towards stereotypical depictions, and that this pull is even more prominent for identity groups from the Global South. CONTENT WARNING: Some examples contain offensive stereotypes.
Is a picture of a bird a bird? A mixed-methods approach to understanding diverse human perspectives and ambiguity in machine vision models
Alicia Parrish
|
Susan Hao
|
Sarah Laszlo
|
Lora Aroyo
Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024
Human experiences are complex and subjective. This subjectivity is reflected in the way people label images for machine vision models. While annotation tasks are often assumed to deliver objective results, this assumption does not allow for the subjectivity of human experience. This paper examines the implications of subjective human judgments in the behavioral task of labeling images used to train machine vision models. We identify three primary sources of ambiguity: (1) depictions of labels in the images can be simply ambiguous, (2) raters’ backgrounds and experiences can influence their judgments and (3) the way the labeling task is defined can also influence raters’ judgments. By taking steps to address these sources of ambiguity, we can create more robust and reliable machine vision models.
Search
Fix data
Co-authors
- Lora Aroyo 1
- Shachi Dave 1
- Remi Denton 1
- Sunipa Dev 1
- Susan Hao 1
- show all...