Sean O’Brien
2024
Linear Layer Extrapolation for Fine-Grained Emotion Classification
Mayukh Sharma
|
Sean O’Brien
|
Julian McAuley
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Certain abilities of Transformer-based language models consistently emerge in their later layers. Previous research has leveraged this phenomenon to improve factual accuracy through self-contrast, penalizing early-exit predictions based on the premise that later-layer updates are more factually reliable than earlier-layer associations. We observe a similar pattern for fine-grained emotion classification in text, demonstrating that self-contrast can enhance encoder-based text classifiers. Additionally, we reinterpret self-contrast as a form of linear extrapolation, which motivates a refined approach that dynamically adjusts the contrastive strength based on the selected intermediate layer. Experiments across multiple models and emotion classification datasets show that our method outperforms standard classification techniques in fine-grained emotion classification tasks.
Question-Analysis Prompting Improves LLM Performance in Reasoning Tasks
Dharunish Yugeswardeenoo
|
Kevin Zhu
|
Sean O’Brien
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
Although LLMs have the potential to transform many fields, they still underperform humans in reasoning tasks. Existing methods induce the model to produce step-by-step calculations, but this research explores the question: Does making the LLM analyze the question improve its performance? We propose a novel prompting strategy called Question Analysis Prompting (QAP), in which the model is prompted to explain the question in ’n’ words before solving. The value of ’n’ influences the length of response generated by the model. QAP is evaluated on GPT-3.5 Turbo and GPT-4 Turbo on arithmetic datasets GSM8K, AQuA, and SAT and commonsense dataset StrategyQA. QAP is compared with other state-of-the-art prompts including chain-of-thought (CoT), Plan and Solve Prompting (PS+) and Take A Deep Breath (TADB). QAP outperforms all state-of-the-art prompts on AQuA and SAT datasets on both GPT-3.5 and GPT-4. QAP consistently ranks among the top-2 prompts on 75% of the tests. A key factor of QAP performance can be attributed to response length, where detailed responses are beneficial when answering harder questions, but can negatively affect easy questions.
Search