Despite the increasing demand for AI-based mental health monitoring tools, their practical utility for clinicians is limited by the lack of interpretability. The CLPsych 2024 Shared Task (Chim et al., 2024) aims to enhance the interpretability of Large Language Models (LLMs), particularly in mental health analysis, by providing evidence of suicidality through linguistic content. We propose a dual-prompting approach: (i) Knowledge-aware evidence extraction by leveraging the expert identity and a suicide dictionary with a mental health-specific LLM; and (ii) Evidence summarization by employing an LLM-based consistency evaluator. Comprehensive experiments demonstrate the effectiveness of combining domain-specific information, revealing performance improvements and the approach’s potential to aid clinicians in assessing mental state progression.
Bipolar Disorder (BD) is a mental disorder characterized by intense mood swings, from depression to manic states. Individuals with BD are at a higher risk of suicide, but BD is often misdiagnosed as Major Depressive Disorder (MDD) due to shared symptoms, resulting in delays in appropriate treatment and increased suicide risk. While early intervention based on social media data has been explored to uncover latent BD risk, little attention has been paid to detecting BD from those misdiagnosed as MDD. Therefore, this study presents a novel approach for identifying BD risk in individuals initially misdiagnosed with MDD. A unique dataset, BD-Risk, is introduced, incorporating mental disorder types and BD mood levels verified by two clinical experts. The proposed multi-task learning for predicting BD risk and BD mood level outperforms the state-of-the-art baselines. Also, the proposed dynamic mood-aware attention can provide insights into the impact of BD mood on future risk, potentially aiding interventions for at-risk individuals.
Aphasia, a language disorder resulting from brain damage, requires accurate identification of specific aphasia types, such as Broca’s and Wernicke’s aphasia, for effective treatment. However, little attention has been paid to developing methods to detect different types of aphasia. Recognizing the importance of analyzing co-speech gestures for distinguish aphasia types, we propose a multimodal graph neural network for aphasia type detection using speech and corresponding gesture patterns. By learning the correlation between the speech and gesture modalities for each aphasia type, our model can generate textual representations sensitive to gesture information, leading to accurate aphasia type detection. Extensive experiments demonstrate the superiority of our approach over existing methods, achieving state-of-the-art results (F1 84.2%). We also show that gesture features outperform acoustic features, highlighting the significance of gesture expression in detecting aphasia types. We provide the codes for reproducibility purposes.