Shashi Bhushan
2023
AI Coach Assist: An Automated Approach for Call Recommendation in Contact Centers for Agent Coaching
Md Tahmid Rahman Laskar
|
Cheng Chen
|
Xue-yong Fu
|
Mahsa Azizi
|
Shashi Bhushan
|
Simon Corston-oliver
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
In recent years, the utilization of Artificial Intelligence (AI) in the contact center industry is on the rise. One area where AI can have a significant impact is in the coaching of contact center agents. By analyzing call transcripts, AI can quickly determine which calls are most relevant for coaching purposes, and provide relevant feedback and insights to the contact center manager or supervisor. In this paper, we present “AI Coach Assis”, which leverages the pre-trained transformer-based language models to determine whether a given call is coachable or not based on the quality assurance (QA) queries/questions asked by the contact center managers or supervisors. The system was trained and evaluated on a large dataset collected from real-world contact centers and provides an efficient and effective way to determine which calls are most relevant for coaching purposes. Extensive experimental evaluation demonstrates the potential of AI Coach Assist to improve the coaching process, resulting in enhancing the performance of contact center agents.
2021
Improving Punctuation Restoration for Speech Transcripts via External Data
Xue-Yong Fu
|
Cheng Chen
|
Md Tahmid Rahman Laskar
|
Shashi Bhushan
|
Simon Corston-Oliver
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
Automatic Speech Recognition (ASR) systems generally do not produce punctuated transcripts. To make transcripts more readable and follow the expected input format for downstream language models, it is necessary to add punctuation marks. In this paper, we tackle the punctuation restoration problem specifically for the noisy text (e.g., phone conversation scenarios). To leverage the available written text datasets, we introduce a data sampling technique based on an n-gram language model to sample more training data that are similar to our in-domain data. Moreover, we propose a two-stage fine-tuning approach that utilizes the sampled external data as well as our in-domain dataset for models based on BERT. Extensive experiments show that the proposed approach outperforms the baseline with an improvement of 1.12% F1 score.