Shengyu Ye


2024

pdf bib
Optimizing Code Retrieval: High-Quality and Scalable Dataset Annotation through Large Language Models
Rui Li | Qi Liu | Liyang He | Zheng Zhang | Hao Zhang | Shengyu Ye | Junyu Lu | Zhenya Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Code retrieval aims to identify code from extensive codebases that semantically aligns with a given query code snippet. Collecting a broad and high-quality set of query and code pairs is crucial to the success of this task. However, existing data collection methods struggle to effectively balance scalability and annotation quality. In this paper, we first analyze the factors influencing the quality of function annotations generated by Large Language Models (LLMs). We find that the invocation of intra-repository functions and third-party APIs plays a significant role. Building on this insight, we propose a novel annotation method that enhances the annotation context by incorporating the content of functions called within the repository and information on third-party API functionalities. Additionally, we integrate LLMs with a novel sorting method to address the multi-level function call relationships within repositories. Furthermore, by applying our proposed method across a range of repositories, we have developed the Query4Code dataset. The quality of this synthesized dataset is validated through both model training and human evaluation, demonstrating high-quality annotations. Moreover, cost analysis confirms the scalability of our annotation method.

pdf bib
VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models
Yifei Liu | Jicheng Wen | Yang Wang | Shengyu Ye | Li Lyna Zhang | Ting Cao | Cheng Li | Mao Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit.Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce **Vector Post-Training Quantization (VPTQ)** for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization.We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ.In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model.Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8× increase in inference throughput compared to SOTA.