Shengyun Si
2024
OpenT2T: An Open-Source Toolkit for Table-to-Text Generation
Haowei Zhang
|
Shengyun Si
|
Yilun Zhao
|
Lujing Xie
|
Zhijian Xu
|
Lyuhao Chen
|
Linyong Nan
|
Pengcheng Wang
|
Xiangru Tang
|
Arman Cohan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Table data is pervasive in various industries, and its comprehension and manipulation demand significant time and effort for users seeking to extract relevant information. Consequently, an increasing number of studies have been directed towards table-to-text generation tasks. However, most existing methods are benchmarked solely on a limited number of datasets with varying configurations, leading to a lack of unified, standardized, fair, and comprehensive comparison between methods. This paper presents OpenT2T, the first open-source toolkit for table-to-text generation, designed to reproduce existing large language models (LLMs) for performance comparison and expedite the development of new models.We have implemented and compared a wide range of LLMs under zero- and few-shot settings on 9 table-to-text generation datasets, covering data insight generation, table summarization, and free-form table question answering. Additionally, we maintain a public leaderboard to provide insights for future work into how to choose appropriate table-to-text generation systems for real-world scenarios.
2023
Investigating Table-to-Text Generation Capabilities of Large Language Models in Real-World Information Seeking Scenarios
Yilun Zhao
|
Haowei Zhang
|
Shengyun Si
|
Linyong Nan
|
Xiangru Tang
|
Arman Cohan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Tabular data is prevalent across various industries, necessitating significant time and effort for users to understand and manipulate for their information-seeking purposes. The advancements in large language models (LLMs) have shown enormous potential to improve user efficiency. However, the adoption of LLMs in real-world applications for table information seeking remains underexplored. In this paper, we investigate the table-to-text capabilities of different LLMs using four datasets within two real-world information seeking scenarios. These include the LogicNLG and our newly-constructed LoTNLG datasets for data insight generation, along with the FeTaQA and our newly-constructed F2WTQ datasets for query-based generation. We structure our investigation around three research questions, evaluating the performance of LLMs in table-to-text generation, automated evaluation, and feedback generation, respectively. Experimental results indicate that the current high-performing LLM, specifically GPT-4, can effectively serve as a table-to-text generator, evaluator, and feedback generator, facilitating users’ information seeking purposes in real-world scenarios. However, a significant performance gap still exists between other open-sourced LLMs (e.g., Vicuna and LLaMA-2) and GPT-4 models. Our data and code are publicly available at https://github.com/yale-nlp/LLM-T2T.
Search
Co-authors
- Haowei Zhang 2
- Yilun Zhao 2
- Linyong Nan 2
- Xiangru Tang 2
- Arman Cohan 2
- show all...