Shuai Tang
2019
Exploiting Invertible Decoders for Unsupervised Sentence Representation Learning
Shuai Tang
|
Virginia R. de Sa
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Encoder-decoder models for unsupervised sentence representation learning using the distributional hypothesis effectively constrain the learnt representation of a sentence to only that needed to reproduce the next sentence. While the decoder is important to constrain the representation, these models tend to discard the decoder after training since only the encoder is needed to map the input sentence into a vector representation. However, parameters learnt in the decoder also contain useful information about the language. In order to utilise the decoder after learning, we present two types of decoding functions whose inverse can be easily derived without expensive inverse calculation. Therefore, the inverse of the decoding function serves as another encoder that produces sentence representations. We show that, with careful design of the decoding functions, the model learns good sentence representations, and the ensemble of the representations produced from the encoder and the inverse of the decoder demonstrate even better generalisation ability and solid transferability.
2018
Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding
Shuai Tang
|
Hailin Jin
|
Chen Fang
|
Zhaowen Wang
|
Virginia de Sa
Proceedings of the Third Workshop on Representation Learning for NLP
We propose an asymmetric encoder-decoder structure, which keeps an RNN as the encoder and has a CNN as the decoder, and the model only explores the subsequent context information as the supervision. The asymmetry in both model architecture and training pair reduces a large amount of the training time. The contribution of our work is summarized as 1. We design experiments to show that an autoregressive decoder or an RNN decoder is not necessary for the encoder-decoder type of models in terms of learning sentence representations, and based on our results, we present 2 findings. 2. The two interesting findings lead to our final model design, which has an RNN encoder and a CNN decoder, and it learns to encode the current sentence and decode the subsequent contiguous words all at once. 3. With a suite of techniques, our model performs good on downstream tasks and can be trained efficiently on a large unlabelled corpus.
2017
Rethinking Skip-thought: A Neighborhood based Approach
Shuai Tang
|
Hailin Jin
|
Chen Fang
|
Zhaowen Wang
|
Virginia de Sa
Proceedings of the 2nd Workshop on Representation Learning for NLP
We study the skip-thought model with neighborhood information as weak supervision. More specifically, we propose a skip-thought neighbor model to consider the adjacent sentences as a neighborhood. We train our skip-thought neighbor model on a large corpus with continuous sentences, and then evaluate the trained model on 7 tasks, which include semantic relatedness, paraphrase detection, and classification benchmarks. Both quantitative comparison and qualitative investigation are conducted. We empirically show that, our skip-thought neighbor model performs as well as the skip-thought model on evaluation tasks. In addition, we found that, incorporating an autoencoder path in our model didn’t aid our model to perform better, while it hurts the performance of the skip-thought model.