Shubham Sharma
2024
Improving Cross-Lingual CSR Classification Using Pretrained Transformers with Variable Selection Networks and Data Augmentation
Shubham Sharma
|
Himanshu Janbandhu
|
Ankush Chopra
Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing
This paper describes our submission to the Cross-Lingual Classification of Corporate Social Responsibility (CSR) Themes and Topics shared task, aiming to identify themes and fine-grained topics present in news articles. Classifying news articles poses several challenges, including limited training data, noisy articles, and longer context length. In this paper, we explore the potential of using pretrained transformer models to classify news articles into CSR themes and fine-grained topics. We propose two different approaches for these tasks. For multi-class classification of CSR themes, we suggest using a pretrained multi-lingual encoder-based model like microsoft/mDeBERTa-v3-base, along with a variable selection network to classify the article into CSR themes. To identify all fine-grained topics in each article, we propose using a pretrained encoder-based model like Longformer, which offers a higher context length. We employ chunking-based inference to avoid information loss in inference and experimented with using different parts and manifestation of original article for training and inference.
2016
Compound Type Identification in Sanskrit: What Roles do the Corpus and Grammar Play?
Amrith Krishna
|
Pavankumar Satuluri
|
Shubham Sharma
|
Apurv Kumar
|
Pawan Goyal
Proceedings of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016)
We propose a classification framework for semantic type identification of compounds in Sanskrit. We broadly classify the compounds into four different classes namely, Avyayībhāva, Tatpuruṣa, Bahuvrīhi and Dvandva. Our classification is based on the traditional classification system followed by the ancient grammar treatise Adṣṭādhyāyī, proposed by Pāṇini 25 centuries back. We construct an elaborate features space for our system by combining conditional rules from the grammar Adṣṭādhyāyī, semantic relations between the compound components from a lexical database Amarakoṣa and linguistic structures from the data using Adaptor Grammars. Our in-depth analysis of the feature space highlight inadequacy of Adṣṭādhyāyī, a generative grammar, in classifying the data samples. Our experimental results validate the effectiveness of using lexical databases as suggested by Amba Kulkarni and Anil Kumar, and put forward a new research direction by introducing linguistic patterns obtained from Adaptor grammars for effective identification of compound type. We utilise an ensemble based approach, specifically designed for handling skewed datasets and we %and Experimenting with various classification methods, we achieve an overall accuracy of 0.77 using random forest classifiers.
Search
Fix data
Co-authors
- Ankush Chopra 1
- Pawan Goyal 1
- Himanshu Janbandhu 1
- Amrith Krishna 1
- Apurv Kumar 1
- show all...