Shuyuan Xu
2024
UP5: Unbiased Foundation Model for Fairness-aware Recommendation
Wenyue Hua
|
Yingqiang Ge
|
Shuyuan Xu
|
Jianchao Ji
|
Zelong Li
|
Yongfeng Zhang
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness.
Language is All a Graph Needs
Ruosong Ye
|
Caiqi Zhang
|
Runhui Wang
|
Shuyuan Xu
|
Yongfeng Zhang
Findings of the Association for Computational Linguistics: EACL 2024
The emergence of large-scale pre-trained language models has revolutionized various AI research domains. Transformers-based Large Language Models (LLMs) have gradually replaced CNNs and RNNs to unify fields of computer vision and natural language processing. Compared with independent data like images, videos or texts, graphs usually contain rich structural and relational information. Meanwhile, languages, especially natural language, being one of the most expressive mediums, excels in describing complex structures. However, existing work on incorporating graph problems into the generative language modeling framework remains very limited. Considering the rising prominence of LLMs, it becomes essential to explore whether LLMs can also replace GNNs as the foundation model for graphs. In this paper, we propose InstructGLM (Instruction-finetuned Graph Language Model) with highly scalable prompts based on natural language instructions. We use natural language to describe multi-scale geometric structure of the graph and then instruction finetune an LLM to perform graph tasks, which enables Generative Graph Learning. Our method surpasses all GNN baselines on ogbn-arxiv, Cora and PubMed datasets, underscoring its effectiveness and sheds light on generative LLMs as new foundation model for graph machine learning. Our code is available at https://github.com/agiresearch/InstructGLM.
Search
Fix data
Co-authors
- Yongfeng Zhang 2
- Yingqiang Ge 1
- Wenyue Hua 1
- Jianchao Ji 1
- Zelong Li 1
- show all...