Siddhant Bikram Shah


2025

pdf bib
GameTox: A Comprehensive Dataset and Analysis for Enhanced Toxicity Detection in Online Gaming Communities
Usman Naseem | Shuvam Shiwakoti | Siddhant Bikram Shah | Surendrabikram Thapa | Qi Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

The prevalence of toxic behavior in online gaming communities necessitates robust detection methods to ensure user safety. We introduce GameTox, a novel dataset comprising 53K game chat utterances annotated for toxicity detection through intent classification and slot filling. This dataset captures the complex relationship between user intent and specific linguistic features that contribute to toxic interactions. We extensively analyze the dataset to uncover key insights into the nature of toxic speech in gaming environments. Furthermore, we establish baseline performance metrics using state-of-the-art natural language processing and large language models, demonstrating the dataset’s contribution towards enhancing the detection of toxic behavior and revealing the limitations of contemporary models. Our results indicate that leveraging both intent detection and slot filling provides a significantly more granular and context-aware understanding of harmful messages. This dataset serves as a valuable resource to train advanced models that can effectively mitigate toxicity in online gaming and foster healthier digital spaces. Our dataset is publicly available at: https://github.com/shucoll/GameTox.

2024

pdf bib
MemeCLIP: Leveraging CLIP Representations for Multimodal Meme Classification
Siddhant Bikram Shah | Shuvam Shiwakoti | Maheep Chaudhary | Haohan Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The complexity of text-embedded images presents a formidable challenge in machine learning given the need for multimodal understanding of multiple aspects of expression conveyed by them. While previous research in multimodal analysis has primarily focused on singular aspects such as hate speech and its subclasses, this study expands this focus to encompass multiple aspects of linguistics: hate, targets of hate, stance, and humor. We introduce a novel dataset PrideMM comprising 5,063 text-embedded images associated with the LGBTQ+ Pride movement, thereby addressing a serious gap in existing resources. We conduct extensive experimentation on PrideMM by using unimodal and multimodal baseline methods to establish benchmarks for each task. Additionally, we propose a novel framework MemeCLIP for efficient downstream learning while preserving the knowledge of the pre-trained CLIP model. The results of our experiments show that MemeCLIP achieves superior performance compared to previously proposed frameworks on two real-world datasets. We further compare the performance of MemeCLIP and zero-shot GPT-4 on the hate classification task. Finally, we discuss the shortcomings of our model by qualitatively analyzing misclassified samples. Our code and dataset are publicly available at: https://github.com/SiddhantBikram/MemeCLIP.