Simon Hachmeier


2025

pdf bib
A Benchmark and Robustness Study of In-Context-Learning with Large Language Models in Music Entity Detection
Simon Hachmeier | Robert Jäschke
Proceedings of the 31st International Conference on Computational Linguistics

Detecting music entities such as song titles or artist names is a useful application to help use cases like processing music search queries or analyzing music consumption on the web. Recent approaches incorporate smaller language models (SLMs) like BERT and achieve high results. However, further research indicates a high influence of entity exposure during pre-training on the performance of the models. With the advent of large language models (LLMs), these outperform SLMs in a variety of downstream tasks. However, researchers are still divided if this is applicable to tasks like entity detection in texts due to issues like hallucination. In this paper, we provide a novel dataset of user-generated metadata and conduct a benchmark and a robustness study using recent LLMs with in-context-learning (ICL). Our results indicate that LLMs in the ICL setting yield higher performance than SLMs. We further uncover the large impact of entity exposure on the best performing LLM in our study.

2024

pdf bib
Information Extraction of Music Entities in Conversational Music Queries
Simon Hachmeier | Robert Jäschke
Proceedings of the 3rd Workshop on NLP for Music and Audio (NLP4MusA)

The detection of music entities such as songs or performing artists in natural language queries is an important task when designing conversational music recommendation agents. Previous research has observed the applicability of named entity recognition approaches for this task based on pre-trained encoders like BERT. In recent years, large language models (LLMs) have surpassed these encoders in a variety of downstream tasks. In this paper, we validate the use of LLMs for information extraction of music entities in conversational queries by few-shot prompting. We test different numbers of examples and compare two sampling methods to obtain few-shot examples. Our results indicate that LLM performance can achieve state-of-the-art performance in the task.

pdf bib
Leveraging User-Generated Metadata of Online Videos for Cover Song Identification
Simon Hachmeier | Robert Jäschke
Proceedings of the 3rd Workshop on NLP for Music and Audio (NLP4MusA)

YouTube is a rich source of cover songs. Since the platform itself is organized in terms of videos rather than songs, the retrieval of covers is not trivial. The field of cover song identification addresses this problem and provides approaches that usually rely on audio content. However, including the user-generated video metadata available on YouTube promises improved identification results. In this paper, we propose a multi-modal approach for cover song identification on online video platforms. We combine the entity resolution models with audio-based approaches using a ranking model. Our findings implicate that leveraging user-generated metadata can stabilize cover song identification performance on YouTube.