Simone Alghisi
2024
DyKnow: Dynamically Verifying Time-Sensitive Factual Knowledge in LLMs
Seyed Mahed Mousavi
|
Simone Alghisi
|
Giuseppe Riccardi
Findings of the Association for Computational Linguistics: EMNLP 2024
LLMs acquire knowledge from massive data snapshots collected at different timestamps. Their knowledge is then commonly evaluated using static benchmarks. However, factual knowledge is generally subject to time-sensitive changes, and static benchmarks cannot address those cases. We present an approach to dynamically evaluate the knowledge in LLMs and their time-sensitiveness against Wikidata, a publicly available up-to-date knowledge graph. We evaluate the time-sensitive knowledge in twenty-four private and open-source LLMs, as well as the effectiveness of four editing methods in updating the outdated facts. Our results show that 1) outdatedness is a critical problem across state-of-the-art LLMs; 2) LLMs output inconsistent answers when prompted with slight variations of the question prompt; and 3) the performance of the state-of-the-art knowledge editing algorithms is very limited, as they can not reduce the cases of outdatedness and output inconsistency.
Should We Fine-Tune or RAG? Evaluating Different Techniques to Adapt LLMs for Dialogue
Simone Alghisi
|
Massimo Rizzoli
|
Gabriel Roccabruna
|
Seyed Mahed Mousavi
|
Giuseppe Riccardi
Proceedings of the 17th International Natural Language Generation Conference
We study the limitations of Large Language Models (LLMs) for the task of response generation in human-machine dialogue. Several techniques have been proposed in the literature for different dialogue types (e.g., Open-Domain). However, the evaluations of these techniques have been limited in terms of base LLMs, dialogue types and evaluation metrics. In this work, we extensively analyze different LLM adaptation techniques when applied to different dialogue types. We have selected two base LLMs, Llama-2 and Mistral, and four dialogue types Open-Domain, Knowledge-Grounded, Task-Oriented, and Question Answering. We evaluate the performance of in-context learning and fine-tuning techniques across datasets selected for each dialogue type. We assess the impact of incorporating external knowledge to ground the generation in both scenarios of Retrieval-Augmented Generation (RAG) and gold knowledge. We adopt consistent evaluation and explainability criteria for automatic metrics and human evaluation protocols. Our analysis shows that there is no universal best-technique for adapting large language models as the efficacy of each technique depends on both the base LLM and the specific type of dialogue. Last but not least, the assessment of the best adaptation technique should include human evaluation to avoid false expectations and outcomes derived from automatic metrics.