Sowmya S.
2024
HaleLab_NITK@SMM4H’24: Binary classification of English tweets reporting children’s medical disorders
Ritik Mahajan
|
Sowmya S.
Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
This paper describes the work undertaken as part of the SMM4H-2024 shared task, specifically Task 5, which involves the binary classification of English tweets reporting children’s medical disorders. The primary objective is to develop a system capable of automatically identifying tweets from users who report their pregnancy and mention children with specific medical conditions, such as attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), delayed speech, or asthma, while distinguishing them from tweets that merely reference a disorder without much context. Our approach leverages advanced natural language processing techniques and machine learning algorithms to accurately classify the tweets. The system achieved an overall F1-score of 0.87, highlighting its robustness and effectiveness in addressing the classification challenge posed by this task.
ReMAG-KR: Retrieval and Medically Assisted Generation with Knowledge Reduction for Medical Question Answering
Sidhaarth Murali
|
Sowmya S.
|
Supreetha R
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
Large Language Models (LLMs) have significant potential for facilitating intelligent end-user applications in healthcare. However, hallucinations remain an inherent problem with LLMs, making it crucial to address this issue with extensive medical knowledge and data. In this work, we propose a Retrieve-and-Medically-Augmented-Generation with Knowledge Reduction (ReMAG-KR) pipeline, employing a carefully curated knowledge base using cross-encoder re-ranking strategies. The pipeline is tested on medical MCQ-based QA datasets as well as general QA datasets. It was observed that when the knowledge base is reduced, the model’s performance decreases by 2-8%, while the inference time improves by 47%.
Search