In human-human conversations, Context Tracking deals with identifying important entities and keeping track of their properties and relationships. This is a challenging problem that encompasses several subtasks such as slot tagging, coreference resolution, resolving plural mentions and entity linking. We approach this problem as an end-to-end modeling task where the conversational context is represented by an entity repository containing the entity references mentioned so far, their properties and the relationships between them. The repository is updated turn-by-turn, thus making training and inference computationally efficient even for long conversations. This paper lays the groundwork for an investigation of this framework in two ways. First, we release Contrack, a large scale human-human conversation corpus for context tracking with people and location annotations. It contains over 7000 conversations with an average of 11.8 turns, 5.8 entities and 15.2 references per conversation. Second, we open-source a neural network architecture for context tracking. Finally we compare this network to state-of-the-art approaches for the subtasks it subsumes and report results on the involved tradeoffs.
Improving the accessibility and automation capabilities of mobile devices can have a significant positive impact on the daily lives of countless users. To stimulate research in this direction, we release a human-annotated dataset with approximately 500k unique annotations aimed at increasing the understanding of the functionality of UI elements. This dataset augments images and view hierarchies from RICO, a large dataset of mobile UIs, with annotations for icons based on their shapes and semantics, and associations between different elements and their corresponding text labels, resulting in a significant increase in the number of UI elements and the categories assigned to them. We also release models using image-only and multimodal inputs; we experiment with various architectures and study the benefits of using multimodal inputs on the new dataset. Our models demonstrate strong performance on an evaluation set of unseen apps, indicating their generalizability to newer screens. These models, combined with the new dataset, can enable innovative functionalities like referring to UI elements by their labels, improved coverage and better semantics for icons etc., which would go a long way in making UIs more usable for everyone.
MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors.