Stamos Katsigiannis
2024
SK_DU Team: Cross-Encoder based Evidence Retrieval and Question Generation with Improved Prompt for the AVeriTeC Shared Task
Shrikant Malviya
|
Stamos Katsigiannis
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)
As part of the AVeriTeC shared task, we developed a pipelined system comprising robust and finely tuned models. Our system integrates advanced techniques for evidence retrieval and question generation, leveraging cross-encoders and large language models (LLMs) for optimal performance. With multi-stage processing, the pipeline demonstrates improvements over baseline models, particularly in handling complex claims that require nuanced reasoning by improved evidence extraction, question generation and veracity prediction. Through detailed experiments and ablation studies, we provide insights into the strengths and weaknesses of our approach, highlighting the critical role of evidence sufficiency and context dependency in automated fact-checking systems. Our system secured a competitive rank, 7th on the development and 12th on the test data, in the shared task, underscoring the effectiveness of our methods in addressing the challenges of real-world claim verification.
Evidence Retrieval for Fact Verification using Multi-stage Reranking
Shrikant Malviya
|
Stamos Katsigiannis
Findings of the Association for Computational Linguistics: EMNLP 2024
In the fact verification domain, the accuracy and efficiency of evidence retrieval are paramount. This paper presents a novel approach to enhance the fact verification process through a Multi-stage ReRanking (M-ReRank) paradigm, which addresses the inherent limitations of single-stage evidence extraction. Our methodology leverages the strengths of advanced reranking techniques, including dense retrieval models and list-aware rerankers, to optimise the retrieval and ranking of evidence of both structured and unstructured types. We demonstrate that our approach significantly outperforms previous state-of-the-art models, achieving a recall rate of 93.63% for Wikipedia pages. The proposed system not only improves the retrieval of relevant sentences and table cells but also enhances the overall verification accuracy. Through extensive experimentation on the FEVEROUS dataset, we show that our M-ReRank pipeline achieves substantial improvements in evidence extraction, particularly increasing the recall of sentences by 7.85%, tables by 8.29% and cells by 3% compared to the current state-of-the-art on the development set.
2022
SOS: Systematic Offensive Stereotyping Bias in Word Embeddings
Fatma Elsafoury
|
Steve R. Wilson
|
Stamos Katsigiannis
|
Naeem Ramzan
Proceedings of the 29th International Conference on Computational Linguistics
Systematic Offensive stereotyping (SOS) in word embeddings could lead to associating marginalised groups with hate speech and profanity, which might lead to blocking and silencing those groups, especially on social media platforms. In this [id=stk]work, we introduce a quantitative measure of the SOS bias, [id=stk]validate it in the most commonly used word embeddings, and investigate if it explains the performance of different word embeddings on the task of hate speech detection. Results show that SOS bias exists in almost all examined word embeddings and that [id=stk]the proposed SOS bias metric correlates positively with the statistics of published surveys on online extremism. We also show that the [id=stk]proposed metric reveals distinct information [id=stk]compared to established social bias metrics. However, we do not find evidence that SOS bias explains the performance of hate speech detection models based on the different word embeddings.